These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
332 related articles for article (PubMed ID: 30341917)
1. Technical Note: U-net-generated synthetic CT images for magnetic resonance imaging-only prostate intensity-modulated radiation therapy treatment planning. Chen S; Qin A; Zhou D; Yan D Med Phys; 2018 Dec; 45(12):5659-5665. PubMed ID: 30341917 [TBL] [Abstract][Full Text] [Related]
2. Dosimetric evaluation of synthetic CT for head and neck radiotherapy generated by a patch-based three-dimensional convolutional neural network. Dinkla AM; Florkow MC; Maspero M; Savenije MHF; Zijlstra F; Doornaert PAH; van Stralen M; Philippens MEP; van den Berg CAT; Seevinck PR Med Phys; 2019 Sep; 46(9):4095-4104. PubMed ID: 31206701 [TBL] [Abstract][Full Text] [Related]
3. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging. Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353 [TBL] [Abstract][Full Text] [Related]
4. MR image-based synthetic CT for IMRT prostate treatment planning and CBCT image-guided localization. Chen S; Quan H; Qin A; Yee S; Yan D J Appl Clin Med Phys; 2016 May; 17(3):236-245. PubMed ID: 27167281 [TBL] [Abstract][Full Text] [Related]
5. Feasibility of MRI-only treatment planning for proton therapy in brain and prostate cancers: Dose calculation accuracy in substitute CT images. Koivula L; Wee L; Korhonen J Med Phys; 2016 Aug; 43(8):4634. PubMed ID: 27487880 [TBL] [Abstract][Full Text] [Related]
6. A dual model HU conversion from MRI intensity values within and outside of bone segment for MRI-based radiotherapy treatment planning of prostate cancer. Korhonen J; Kapanen M; Keyriläinen J; Seppälä T; Tenhunen M Med Phys; 2014 Jan; 41(1):011704. PubMed ID: 24387496 [TBL] [Abstract][Full Text] [Related]
7. Implementation of a novel algorithm for generating synthetic CT images from magnetic resonance imaging data sets for prostate cancer radiation therapy. Kim J; Glide-Hurst C; Doemer A; Wen N; Movsas B; Chetty IJ Int J Radiat Oncol Biol Phys; 2015 Jan; 91(1):39-47. PubMed ID: 25442341 [TBL] [Abstract][Full Text] [Related]
8. Technical Note: MRI only prostate radiotherapy planning using the statistical decomposition algorithm. Siversson C; Nordström F; Nilsson T; Nyholm T; Jonsson J; Gunnlaugsson A; Olsson LE Med Phys; 2015 Oct; 42(10):6090-7. PubMed ID: 26429284 [TBL] [Abstract][Full Text] [Related]
9. MRI-based treatment planning for radiotherapy: dosimetric verification for prostate IMRT. Chen L; Price RA; Wang L; Li J; Qin L; McNeeley S; Ma CM; Freedman GM; Pollack A Int J Radiat Oncol Biol Phys; 2004 Oct; 60(2):636-47. PubMed ID: 15380601 [TBL] [Abstract][Full Text] [Related]
10. MR-based synthetic CT generation using a deep convolutional neural network method. Han X Med Phys; 2017 Apr; 44(4):1408-1419. PubMed ID: 28192624 [TBL] [Abstract][Full Text] [Related]
11. MR-based synthetic CT image for intensity-modulated proton treatment planning of nasopharyngeal carcinoma patients. Chen S; Peng Y; Qin A; Liu Y; Zhao C; Deng X; Deraniyagala R; Stevens C; Ding X Acta Oncol; 2022 Nov; 61(11):1417-1424. PubMed ID: 36305424 [TBL] [Abstract][Full Text] [Related]
12. MR-based treatment planning in radiation therapy using a deep learning approach. Liu F; Yadav P; Baschnagel AM; McMillan AB J Appl Clin Med Phys; 2019 Mar; 20(3):105-114. PubMed ID: 30861275 [TBL] [Abstract][Full Text] [Related]
13. Magnetic resonance-based synthetic computed tomography images generated using generative adversarial networks for nasopharyngeal carcinoma radiotherapy treatment planning. Peng Y; Chen S; Qin A; Chen M; Gao X; Liu Y; Miao J; Gu H; Zhao C; Deng X; Qi Z Radiother Oncol; 2020 Sep; 150():217-224. PubMed ID: 32622781 [TBL] [Abstract][Full Text] [Related]
14. Evaluating the Hounsfield unit assignment and dose differences between CT-based standard and deep learning-based synthetic CT images for MRI-only radiation therapy of the head and neck. Singhrao K; Dugan CL; Calvin C; Pelayo L; Yom SS; Chan JW; Scholey JE; Singer L J Appl Clin Med Phys; 2024 Jan; 25(1):e14239. PubMed ID: 38128040 [TBL] [Abstract][Full Text] [Related]
15. Dosimetric evaluation of synthetic CT relative to bulk density assignment-based magnetic resonance-only approaches for prostate radiotherapy. Kim J; Garbarino K; Schultz L; Levin K; Movsas B; Siddiqui MS; Chetty IJ; Glide-Hurst C Radiat Oncol; 2015 Nov; 10():239. PubMed ID: 26597251 [TBL] [Abstract][Full Text] [Related]
16. Dose evaluation of fast synthetic-CT generation using a generative adversarial network for general pelvis MR-only radiotherapy. Maspero M; Savenije MHF; Dinkla AM; Seevinck PR; Intven MPW; Jurgenliemk-Schulz IM; Kerkmeijer LGW; van den Berg CAT Phys Med Biol; 2018 Sep; 63(18):185001. PubMed ID: 30109989 [TBL] [Abstract][Full Text] [Related]
17. Comparison of Deep Learning-Based and Patch-Based Methods for Pseudo-CT Generation in MRI-Based Prostate Dose Planning. Largent A; Barateau A; Nunes JC; Mylona E; Castelli J; Lafond C; Greer PB; Dowling JA; Baxter J; Saint-Jalmes H; Acosta O; de Crevoisier R Int J Radiat Oncol Biol Phys; 2019 Dec; 105(5):1137-1150. PubMed ID: 31505245 [TBL] [Abstract][Full Text] [Related]
18. MRI-based IMRT planning for MR-linac: comparison between CT- and MRI-based plans for pancreatic and prostate cancers. Prior P; Chen X; Botros M; Paulson ES; Lawton C; Erickson B; Li XA Phys Med Biol; 2016 May; 61(10):3819-42. PubMed ID: 27089554 [TBL] [Abstract][Full Text] [Related]
19. Comprehensive dose evaluation of a Deep Learning based synthetic Computed Tomography algorithm for pelvic Magnetic Resonance-only radiotherapy. Wyatt JJ; Kaushik S; Cozzini C; Pearson RA; Petit S; Capala M; Hernandez-Tamames JA; Hideghéty K; Maxwell RJ; Wiesinger F; McCallum HM Radiother Oncol; 2023 Jul; 184():109692. PubMed ID: 37150446 [TBL] [Abstract][Full Text] [Related]
20. Abdominal synthetic CT generation from MR Dixon images using a U-net trained with 'semi-synthetic' CT data. Liu L; Johansson A; Cao Y; Dow J; Lawrence TS; Balter JM Phys Med Biol; 2020 Jun; 65(12):125001. PubMed ID: 32330923 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]