These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 30342069)
1. Optical consequences of a genetically-encoded voltage indicator with a pH sensitive fluorescent protein. Kang BE; Lee S; Baker BJ Neurosci Res; 2019 Sep; 146():13-21. PubMed ID: 30342069 [TBL] [Abstract][Full Text] [Related]
2. Mechanistic studies of the genetically encoded fluorescent protein voltage probe ArcLight. Han Z; Jin L; Chen F; Loturco JJ; Cohen LB; Bondar A; Lazar J; Pieribone VA PLoS One; 2014; 9(11):e113873. PubMed ID: 25419571 [TBL] [Abstract][Full Text] [Related]
3. Directed Evolution of Key Residues in Fluorescent Protein Inverses the Polarity of Voltage Sensitivity in the Genetically Encoded Indicator ArcLight. Platisa J; Vasan G; Yang A; Pieribone VA ACS Chem Neurosci; 2017 Mar; 8(3):513-523. PubMed ID: 28045247 [TBL] [Abstract][Full Text] [Related]
4. Expression and testing in plants of ArcLight, a genetically-encoded voltage indicator used in neuroscience research. Matzke AJ; Matzke M BMC Plant Biol; 2015 Oct; 15():245. PubMed ID: 26459340 [TBL] [Abstract][Full Text] [Related]
5. Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent protein voltage probe. Jin L; Han Z; Platisa J; Wooltorton JR; Cohen LB; Pieribone VA Neuron; 2012 Sep; 75(5):779-85. PubMed ID: 22958819 [TBL] [Abstract][Full Text] [Related]
6. A dimeric fluorescent protein yields a bright, red-shifted GEVI capable of population signals in brain slice. Yi B; Kang BE; Lee S; Braubach S; Baker BJ Sci Rep; 2018 Oct; 8(1):15199. PubMed ID: 30315245 [TBL] [Abstract][Full Text] [Related]
7. Mechanism of ArcLight derived GEVIs involves electrostatic interactions that can affect proton wires. Kang BE; Leong LM; Kim Y; Miyazaki K; Ross WN; Baker BJ Biophys J; 2021 May; 120(10):1916-1926. PubMed ID: 33744263 [TBL] [Abstract][Full Text] [Related]
8. Voltage imaging in the olfactory bulb using transgenic mouse lines expressing the genetically encoded voltage indicator ArcLight. Platisa J; Zeng H; Madisen L; Cohen LB; Pieribone VA; Storace DA Sci Rep; 2022 Feb; 12(1):1875. PubMed ID: 35115567 [TBL] [Abstract][Full Text] [Related]
9. Combinatorial mutagenesis of the voltage-sensing domain enables the optical resolution of action potentials firing at 60 Hz by a genetically encoded fluorescent sensor of membrane potential. Piao HH; Rajakumar D; Kang BE; Kim EH; Baker BJ J Neurosci; 2015 Jan; 35(1):372-85. PubMed ID: 25568129 [TBL] [Abstract][Full Text] [Related]
10. Improving a genetically encoded voltage indicator by modifying the cytoplasmic charge composition. Lee S; Geiller T; Jung A; Nakajima R; Song YK; Baker BJ Sci Rep; 2017 Aug; 7(1):8286. PubMed ID: 28811673 [TBL] [Abstract][Full Text] [Related]
11. Single-molecule fluorimetry and gating currents inspire an improved optical voltage indicator. Treger JS; Priest MF; Bezanilla F Elife; 2015 Nov; 4():e10482. PubMed ID: 26599732 [TBL] [Abstract][Full Text] [Related]
12. Pado, a fluorescent protein with proton channel activity can optically monitor membrane potential, intracellular pH, and map gap junctions. Kang BE; Baker BJ Sci Rep; 2016 Apr; 6():23865. PubMed ID: 27040905 [TBL] [Abstract][Full Text] [Related]
13. Fluorescent protein voltage probes derived from ArcLight that respond to membrane voltage changes with fast kinetics. Han Z; Jin L; Platisa J; Cohen LB; Baker BJ; Pieribone VA PLoS One; 2013; 8(11):e81295. PubMed ID: 24312287 [TBL] [Abstract][Full Text] [Related]
14. Genetically Encoded Protein Sensors of Membrane Potential. Storace D; Rad MS; Han Z; Jin L; Cohen LB; Hughes T; Baker BJ; Sung U Adv Exp Med Biol; 2015; 859():493-509. PubMed ID: 26238066 [TBL] [Abstract][Full Text] [Related]
15. Developing Fast Fluorescent Protein Voltage Sensors by Optimizing FRET Interactions. Sung U; Sepehri-Rad M; Piao HH; Jin L; Hughes T; Cohen LB; Baker BJ PLoS One; 2015; 10(11):e0141585. PubMed ID: 26587834 [TBL] [Abstract][Full Text] [Related]
16. A high-speed, bright, red fluorescent voltage sensor to detect neural activity. Beck C; Gong Y Sci Rep; 2019 Nov; 9(1):15878. PubMed ID: 31685893 [TBL] [Abstract][Full Text] [Related]
17. Imaging Neuronal Activity with Fast and Sensitive Red-Shifted Electrochromic FRET Indicators. Xu Y; Deng M; Zhang S; Yang J; Peng L; Chu J; Zou P ACS Chem Neurosci; 2019 Dec; 10(12):4768-4775. PubMed ID: 31725259 [TBL] [Abstract][Full Text] [Related]
18. Designs and sensing mechanisms of genetically encoded fluorescent voltage indicators. St-Pierre F; Chavarha M; Lin MZ Curr Opin Chem Biol; 2015 Aug; 27():31-8. PubMed ID: 26079047 [TBL] [Abstract][Full Text] [Related]
19. Genetically Encoded Voltage Indicators: Opportunities and Challenges. Yang HH; St-Pierre F J Neurosci; 2016 Sep; 36(39):9977-89. PubMed ID: 27683896 [TBL] [Abstract][Full Text] [Related]
20. Conserved Amino Acids Residing Outside the Voltage Field Can Shift the Voltage Sensitivity and Increase the Signal Speed and Size of Sepehri Rad M; Cohen LB; Baker BJ Front Cell Dev Biol; 2022; 10():868143. PubMed ID: 35784472 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]