These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 30342238)

  • 1. The neural basis of hand choice: An fMRI investigation of the Posterior Parietal Interhemispheric Competition model.
    Fitzpatrick AM; Dundon NM; Valyear KF
    Neuroimage; 2019 Jan; 185():208-221. PubMed ID: 30342238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hand-independent representation of tool-use pantomimes in the left anterior intraparietal cortex.
    Ogawa K; Imai F
    Exp Brain Res; 2016 Dec; 234(12):3677-3687. PubMed ID: 27591782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions of the parietal cortex to increased efficiency of planning-based action selection.
    Randerath J; Valyear KF; Philip BA; Frey SH
    Neuropsychologia; 2017 Oct; 105():135-143. PubMed ID: 28438707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The human prefrontal and parietal association cortices are involved in NO-GO performances: an event-related fMRI study.
    Watanabe J; Sugiura M; Sato K; Sato Y; Maeda Y; Matsue Y; Fukuda H; Kawashima R
    Neuroimage; 2002 Nov; 17(3):1207-16. PubMed ID: 12414261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decoding Internally and Externally Driven Movement Plans.
    Ariani G; Wurm MF; Lingnau A
    J Neurosci; 2015 Oct; 35(42):14160-71. PubMed ID: 26490857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human posterior parietal cortex mediates hand-specific planning.
    Valyear KF; Frey SH
    Neuroimage; 2015 Jul; 114():226-38. PubMed ID: 25842294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebral activations related to writing and drawing with each hand.
    Potgieser AR; van der Hoorn A; de Jong BM
    PLoS One; 2015; 10(5):e0126723. PubMed ID: 25955655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A functional MRI study of motor dysfunction in Friedreich's ataxia.
    Akhlaghi H; Corben L; Georgiou-Karistianis N; Bradshaw J; Delatycki MB; Storey E; Egan GF
    Brain Res; 2012 Aug; 1471():138-54. PubMed ID: 22771856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Handedness-dependent and -independent cerebral asymmetries in the anterior intraparietal sulcus and ventral premotor cortex during grasp planning.
    Martin K; Jacobs S; Frey SH
    Neuroimage; 2011 Jul; 57(2):502-12. PubMed ID: 21554968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of posterior parietal cortex in visually guided reaching movements in humans.
    Kertzman C; Schwarz U; Zeffiro TA; Hallett M
    Exp Brain Res; 1997 Mar; 114(1):170-83. PubMed ID: 9125463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interhemispheric visuo-motor integration in humans: the role of the superior parietal cortex.
    Iacoboni M; Zaidel E
    Neuropsychologia; 2004; 42(4):419-25. PubMed ID: 14728916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Position and Identity Information Available in fMRI Patterns of Activity in Human Visual Cortex.
    Roth ZN; Zohary E
    J Neurosci; 2015 Aug; 35(33):11559-71. PubMed ID: 26290233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motor task difficulty and brain activity: investigation of goal-directed reciprocal aiming using positron emission tomography.
    Winstein CJ; Grafton ST; Pohl PS
    J Neurophysiol; 1997 Mar; 77(3):1581-94. PubMed ID: 9084621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motor sequence complexity and performing hand produce differential patterns of hemispheric lateralization.
    Haaland KY; Elsinger CL; Mayer AR; Durgerian S; Rao SM
    J Cogn Neurosci; 2004 May; 16(4):621-36. PubMed ID: 15165352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Movement preparation and execution: differential functional activation patterns after traumatic brain injury.
    Gooijers J; Beets IA; Albouy G; Beeckmans K; Michiels K; Sunaert S; Swinnen SP
    Brain; 2016 Sep; 139(Pt 9):2469-85. PubMed ID: 27435093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoding Brain States for Planning Functional Grasps of Tools: A Functional Magnetic Resonance Imaging Multivoxel Pattern Analysis Study.
    Buchwald M; Przybylski Ł; Króliczak G
    J Int Neuropsychol Soc; 2018 Nov; 24(10):1013-1025. PubMed ID: 30196800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grasping with the Press of a Button: Grasp-selective Responses in the Human Anterior Intraparietal Sulcus Depend on Nonarbitrary Causal Relationships between Hand Movements and End-effector Actions.
    Frey SH; Hansen M; Marchal N
    J Cogn Neurosci; 2015 Jun; 27(6):1146-60. PubMed ID: 25436672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zones of bimanual and unimanual preference within human primary sensorimotor cortex during object manipulation.
    Theorin A; Johansson RS
    Neuroimage; 2007; 36 Suppl 2():T2-T15. PubMed ID: 17499166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can left-handedness be switched? Insights from an early switch of handwriting.
    Klöppel S; Vongerichten A; van Eimeren T; Frackowiak RS; Siebner HR
    J Neurosci; 2007 Jul; 27(29):7847-53. PubMed ID: 17634378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tactile-visual integration in the posterior parietal cortex: a functional magnetic resonance imaging study.
    Nakashita S; Saito DN; Kochiyama T; Honda M; Tanabe HC; Sadato N
    Brain Res Bull; 2008 Mar; 75(5):513-25. PubMed ID: 18355627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.