These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 30342399)
41. Improving distillation method and device of tritiated water analysis for ultra high decontamination efficiency. Fang HF; Wang CF; Lin CK J Environ Radioact; 2015 Dec; 150():62-7. PubMed ID: 26295438 [TBL] [Abstract][Full Text] [Related]
42. [Radioecological condition of cleansing structures on the territory contaminated with radionuclides as a result of the accident on the Chernobyl Nuclear Power Station and the problems handing with the forming precipitates of sewage in republic Belarus]. Kavtukha GA; Basharin AV; Vishnevskaia AA; Ivanskiĭ II; Skurat VV; Shiriaeva NM; Stankevich LA Radiats Biol Radioecol; 1999; 39(5):514-20. PubMed ID: 10576020 [TBL] [Abstract][Full Text] [Related]
43. The physicochemical distribution of Hormann V; Fischer HW J Environ Radioact; 2017 Nov; 178-179():55-62. PubMed ID: 28779650 [TBL] [Abstract][Full Text] [Related]
44. A review on mainstream deammonification of municipal wastewater: Novel dual step process. Gu J; Zhang M; Liu Y Bioresour Technol; 2020 Mar; 299():122674. PubMed ID: 31902640 [TBL] [Abstract][Full Text] [Related]
45. Decontamination of protective clothing against radioactive contamination. Vošahlíková I; Otáhal P Radiat Prot Dosimetry; 2014 Nov; 162(1-2):144-7. PubMed ID: 25084793 [TBL] [Abstract][Full Text] [Related]
46. Health Effects Associated with Wastewater Treatment, Reuse, and Disposal. Qu X; Zhao Y; Yu R; Li Y; Falzone C; Smith G; Ikehata K Water Environ Res; 2016 Oct; 88(10):1823-55. PubMed ID: 27620110 [TBL] [Abstract][Full Text] [Related]
47. Decontamination work in the area surrounding Fukushima Dai-ichi Nuclear Power Plant: another occupational health challenge of the nuclear disaster. Wada K; Yoshikawa T; Murata M Arch Environ Occup Health; 2012; 67(3):128-32. PubMed ID: 22845725 [TBL] [Abstract][Full Text] [Related]
48. Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: a review. Lofrano G; Meriç S; Zengin GE; Orhon D Sci Total Environ; 2013 Sep; 461-462():265-81. PubMed ID: 23735721 [TBL] [Abstract][Full Text] [Related]
49. Resource recovery from municipal wastewater: A critical paradigm shift in the post era of activated sludge. Zhang X; Liu Y Bioresour Technol; 2022 Nov; 363():127932. PubMed ID: 36096327 [TBL] [Abstract][Full Text] [Related]
50. Risks and management of radiation exposure. Yamamoto LG Pediatr Emerg Care; 2013 Sep; 29(9):1016-26; quiz 1027-29. PubMed ID: 24201986 [TBL] [Abstract][Full Text] [Related]
51. Treatability of hazardous substances in industrial wastewater: case studies for textile manufacturing and leather production sectors. Gursoy-Haksevenler BH; Atasoy-Aytis E; Dilaver M; Karaaslan Y Environ Monit Assess; 2022 Apr; 194(5):383. PubMed ID: 35441990 [TBL] [Abstract][Full Text] [Related]
52. IMPACT OF THE RIVNE NPP ACTIVITY ON NATURAL AND SOCIAL ENVIRONMENT OF THE CONTROL AREA. Prylypko VA; Morozova MM; Bondarenko IV; Petrychenko OO; Romanenko OM; Tuz KK; Ozerova YY Probl Radiac Med Radiobiol; 2019 Dec; 24():131-149. PubMed ID: 31841463 [TBL] [Abstract][Full Text] [Related]
53. Recent advances in the polyurethane-based adsorbents for the decontamination of hazardous wastewater pollutants. Selvasembian R; Gwenzi W; Chaukura N; Mthembu S J Hazard Mater; 2021 Sep; 417():125960. PubMed ID: 34229405 [TBL] [Abstract][Full Text] [Related]
54. Absorption of radionuclides from the Fukushima nuclear accident by a novel algal strain. Shimura H; Itoh K; Sugiyama A; Ichijo S; Ichijo M; Furuya F; Nakamura Y; Kitahara K; Kobayashi K; Yukawa Y; Kobayashi T PLoS One; 2012; 7(9):e44200. PubMed ID: 22984475 [TBL] [Abstract][Full Text] [Related]
55. [Removal & decontamination of radioactive reactor waste waters]. ZEZULA I Prac Lek; 1957 Dec; 9(6):538-47 concl. PubMed ID: 13567235 [No Abstract] [Full Text] [Related]
56. Applications of membrane bioreactors for water reclamation: Micropollutant removal, mechanisms and perspectives. Ma J; Dai R; Chen M; Khan SJ; Wang Z Bioresour Technol; 2018 Dec; 269():532-543. PubMed ID: 30195697 [TBL] [Abstract][Full Text] [Related]
57. Occurrence of and radioanalytical methods used to determine medical radionuclides in environmental and biological samples. A review. Martínez J; Baciu T; Peñalver A; Aguilar C; Borrull F J Environ Radioact; 2019 Oct; 207():37-52. PubMed ID: 31158614 [TBL] [Abstract][Full Text] [Related]
58. A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation. Wu H; Zhang J; Ngo HH; Guo W; Hu Z; Liang S; Fan J; Liu H Bioresour Technol; 2015 Jan; 175():594-601. PubMed ID: 25453440 [TBL] [Abstract][Full Text] [Related]
59. Necessity of direct energy and ammonium recovery for carbon neutral municipal wastewater reclamation in an innovative anaerobic MBR-biochar adsorption-reverse osmosis process. Zhang X; Gu J; Liu Y Water Res; 2022 Mar; 211():118058. PubMed ID: 35042076 [TBL] [Abstract][Full Text] [Related]
60. Decision Support Tool for Water Reclamation Beyond Technical Considerations-Egyptian, Moroccan, and Tunisian Case Studies. Oertlé E; Mueller SR; Choukr-Allah R; Jaouani A Integr Environ Assess Manag; 2020 Nov; 16(6):885-897. PubMed ID: 32589785 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]