These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

447 related articles for article (PubMed ID: 30342488)

  • 1. Odds ratios from logistic, geometric, Poisson, and negative binomial regression models.
    Sroka CJ; Nagaraja HN
    BMC Med Res Methodol; 2018 Oct; 18(1):112. PubMed ID: 30342488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alternatives for logistic regression in cross-sectional studies: an empirical comparison of models that directly estimate the prevalence ratio.
    Barros AJ; Hirakata VN
    BMC Med Res Methodol; 2003 Oct; 3():21. PubMed ID: 14567763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Approaches for dealing with various sources of overdispersion in modeling count data: Scale adjustment versus modeling.
    Payne EH; Hardin JW; Egede LE; Ramakrishnan V; Selassie A; Gebregziabher M
    Stat Methods Med Res; 2017 Aug; 26(4):1802-1823. PubMed ID: 26031359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing performance between log-binomial and robust Poisson regression models for estimating risk ratios under model misspecification.
    Chen W; Qian L; Shi J; Franklin M
    BMC Med Res Methodol; 2018 Jun; 18(1):63. PubMed ID: 29929477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Privacy-protecting estimation of adjusted risk ratios using modified Poisson regression in multi-center studies.
    Shu D; Young JG; Toh S
    BMC Med Res Methodol; 2019 Dec; 19(1):228. PubMed ID: 31805872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parameter estimation and goodness-of-fit in log binomial regression.
    Blizzard L; Hosmer DW
    Biom J; 2006 Feb; 48(1):5-22. PubMed ID: 16544809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Logistic regression for dichotomized counts.
    Preisser JS; Das K; Benecha H; Stamm JW
    Stat Methods Med Res; 2016 Dec; 25(6):3038-3056. PubMed ID: 24862513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reducing Monte Carlo error in the Bayesian estimation of risk ratios using log-binomial regression models.
    Salmerón D; Cano JA; Chirlaque MD
    Stat Med; 2015 Aug; 34(19):2755-67. PubMed ID: 25944082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Logistic Regression: Limitations in the Estimation of Measures of Association with Binary Health Outcomes.
    Pinheiro-Guedes L; Martinho C; O Martins MR
    Acta Med Port; 2024 Oct; 37(10):697-705. PubMed ID: 39366365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Negative log-binomial model with optimal robust variance to estimate the prevalence ratio, in cross-sectional population studies.
    Ibáñez-Pinilla M; Villalba-Niño S; Olaya-Galán NN
    BMC Med Res Methodol; 2023 Oct; 23(1):219. PubMed ID: 37794385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Random effects meta-analysis of event outcome in the framework of the generalized linear mixed model with applications in sparse data.
    Stijnen T; Hamza TH; Ozdemir P
    Stat Med; 2010 Dec; 29(29):3046-67. PubMed ID: 20827667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Expectation Maximization algorithm for fitting the generalized odds-rate model to interval censored data.
    Zhou J; Zhang J; Lu W
    Stat Med; 2017 Mar; 36(7):1157-1171. PubMed ID: 28004414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the EM algorithm for overdispersed count data.
    McLachlan GJ
    Stat Methods Med Res; 1997 Mar; 6(1):76-98. PubMed ID: 9185291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of statistical approaches to evaluate factors associated with metabolic syndrome.
    Fekedulegn D; Andrew M; Violanti J; Hartley T; Charles L; Burchfiel C
    J Clin Hypertens (Greenwich); 2010 May; 12(5):365-73. PubMed ID: 20546380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generalized Poisson distribution: the property of mixture of Poisson and comparison with negative binomial distribution.
    Joe H; Zhu R
    Biom J; 2005 Apr; 47(2):219-29. PubMed ID: 16389919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using the jackknife for estimation in log link Bernoulli regression models.
    Lipsitz SR; Fitzmaurice GM; Arriaga A; Sinha D; Gawande AA
    Stat Med; 2015 Feb; 34(3):444-53. PubMed ID: 25388125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient estimation and prediction for the Bayesian binary spatial model with flexible link functions.
    Roy V; Evangelou E; Zhu Z
    Biometrics; 2016 Mar; 72(1):289-98. PubMed ID: 26331903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of robustness to outliers between robust poisson models and log-binomial models when estimating relative risks for common binary outcomes: a simulation study.
    Chen W; Shi J; Qian L; Azen SP
    BMC Med Res Methodol; 2014 Jun; 14():82. PubMed ID: 24965498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poisson and negative binomial item count techniques for surveys with sensitive question.
    Tian GL; Tang ML; Wu Q; Liu Y
    Stat Methods Med Res; 2017 Apr; 26(2):931-947. PubMed ID: 25519889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A blended link approach to relative risk regression.
    Clark RG; Barr M
    Stat Methods Med Res; 2018 Nov; 27(11):3325-3339. PubMed ID: 29298596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.