BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

695 related articles for article (PubMed ID: 30342498)

  • 41. Immediate effects of real-time feedback on jump-landing kinematics.
    Ericksen HM; Thomas AC; Gribble PA; Doebel SC; Pietrosimone BG
    J Orthop Sports Phys Ther; 2015 Feb; 45(2):112-8. PubMed ID: 25552287
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Lower extremity fatigue, sex, and landing performance in a population with recurrent low back pain.
    Haddas R; James CR; Hooper TL
    J Athl Train; 2015 Apr; 50(4):378-84. PubMed ID: 25322344
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of an Intervention Program on Lower Extremity Biomechanics in Stop-Jump and Side-Cutting Tasks.
    Yang C; Yao W; Garrett WE; Givens DL; Hacke J; Liu H; Yu B
    Am J Sports Med; 2018 Oct; 46(12):3014-3022. PubMed ID: 30148646
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The effects of 2 landing techniques on knee kinematics, kinetics, and performance during stop-jump and side-cutting tasks.
    Dai B; Garrett WE; Gross MT; Padua DA; Queen RM; Yu B
    Am J Sports Med; 2015 Feb; 43(2):466-74. PubMed ID: 25367015
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Association Between Anatomical Characteristics, Knee Laxity, Muscle Strength, and Peak Knee Valgus During Vertical Drop-Jump Landings.
    Nilstad A; Krosshaug T; Mok KM; Bahr R; Andersen TE
    J Orthop Sports Phys Ther; 2015 Dec; 45(12):998-1005. PubMed ID: 26381485
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Medio-lateral knee fluency in anterior cruciate ligament-injured athletes during dynamic movement trials.
    Panos JA; Hoffman JT; Wordeman SC; Hewett TE
    Clin Biomech (Bristol, Avon); 2016 Mar; 33():7-12. PubMed ID: 26895446
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Age Influences Biomechanical Changes After Participation in an Anterior Cruciate Ligament Injury Prevention Program.
    Thompson-Kolesar JA; Gatewood CT; Tran AA; Silder A; Shultz R; Delp SL; Dragoo JL
    Am J Sports Med; 2018 Mar; 46(3):598-606. PubMed ID: 29281799
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Real-time biofeedback to target risk of anterior cruciate ligament injury: a technical report for injury prevention and rehabilitation.
    Ford KR; DiCesare CA; Myer GD; Hewett TE
    J Sport Rehabil; 2015 May; 24(2):. PubMed ID: 24959871
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sex differences in unilateral landing mechanics from absolute and relative heights.
    Weinhandl JT; Irmischer BS; Sievert ZA
    Knee; 2015 Sep; 22(4):298-303. PubMed ID: 25910453
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effect of changing toe direction on knee kinematics during drop vertical jump: a possible risk factor for anterior cruciate ligament injury.
    Ishida T; Yamanaka M; Takeda N; Homan K; Koshino Y; Kobayashi T; Matsumoto H; Aoki Y
    Knee Surg Sports Traumatol Arthrosc; 2015 Apr; 23(4):1004-9. PubMed ID: 24318510
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Jump landing strategies in male and female college athletes and the implications of such strategies for anterior cruciate ligament injury.
    Fagenbaum R; Darling WG
    Am J Sports Med; 2003; 31(2):233-40. PubMed ID: 12642258
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Test-retest reliability of knee biomechanics during stop jump landings.
    Milner CE; Westlake CG; Tate JJ
    J Biomech; 2011 Jun; 44(9):1814-6. PubMed ID: 21514592
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Effects of Injury Prevention Programs on the Biomechanics of Landing Tasks: A Systematic Review With Meta-analysis.
    Lopes TJA; Simic M; Myer GD; Ford KR; Hewett TE; Pappas E
    Am J Sports Med; 2018 May; 46(6):1492-1499. PubMed ID: 28759729
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biomechanical characteristics of the knee joint in female athletes during tasks associated with anterior cruciate ligament injury.
    Nagano Y; Ida H; Akai M; Fukubayashi T
    Knee; 2009 Mar; 16(2):153-8. PubMed ID: 19110433
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Gender differences in landing mechanics vary depending on the type of landing.
    Butler RJ; Willson JD; Fowler D; Queen RM
    Clin J Sport Med; 2013 Jan; 23(1):52-7. PubMed ID: 22678111
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fatigue and recovery have different effects on knee biomechanics of drop vertical jump between female collegiate and recreational athletes.
    Harato K; Morishige Y; Niki Y; Kobayashi S; Nagura T
    J Orthop Surg Res; 2021 Dec; 16(1):739. PubMed ID: 34965877
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparison of drop jumps and sport-specific sidestep cutting: implications for anterior cruciate ligament injury risk screening.
    Kristianslund E; Krosshaug T
    Am J Sports Med; 2013 Mar; 41(3):684-8. PubMed ID: 23287439
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Improvements in hip muscle performance result in increased use of the hip extensors and abductors during a landing task.
    Stearns KM; Powers CM
    Am J Sports Med; 2014 Mar; 42(3):602-9. PubMed ID: 24464929
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Preferred Hip Strategy During Landing Reduces Knee Abduction Moment in Collegiate Female Soccer Players.
    Nguyen AD; Taylor JB; Wimbish TG; Keith JL; Ford KR
    J Sport Rehabil; 2018 May; 27(3):213-217. PubMed ID: 28338388
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Knee Abduction Affects Greater Magnitude of Change in ACL and MCL Strains Than Matched Internal Tibial Rotation In Vitro.
    Bates NA; Nesbitt RJ; Shearn JT; Myer GD; Hewett TE
    Clin Orthop Relat Res; 2017 Oct; 475(10):2385-2396. PubMed ID: 28455730
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 35.