These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 3034262)

  • 1. Defective adaptation to a low phosphate environment by cultured renal tubular cells from X-linked hypophosphatemic (Hyp) mice.
    Kinoshita Y; Fukase M; Nakada M; Fujita T
    Biochem Biophys Res Commun; 1987 Apr; 144(2):763-9. PubMed ID: 3034262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of phosphate supplementation on the expression of the mutant phenotype in murine X-linked hypophosphatemic rickets.
    Tenenhouse HS; Martel J; Rubin J; Harvey N
    Bone; 1994; 15(6):677-83. PubMed ID: 7873297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the Hyp mutation and diet-induced hyperparathyroidism on renal parathyroid hormone- and forskolin-stimulated adenosine 3',5'-monophosphate production and brush border membrane phosphate transport.
    Tenenhouse HS; Veksler A
    Endocrinology; 1986 Mar; 118(3):1047-53. PubMed ID: 3004890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct demonstration of a humorally-mediated inhibition of renal phosphate transport in the Hyp mouse.
    Lajeunesse D; Meyer RA; Hamel L
    Kidney Int; 1996 Nov; 50(5):1531-8. PubMed ID: 8914019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphate transport in osteoblasts from normal and X-linked hypophosphatemic mice.
    Rifas L; Dawson LL; Halstead LR; Roberts M; Avioli LV
    Calcif Tissue Int; 1994 Jun; 54(6):505-10. PubMed ID: 8082056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thyroid hormones increase renal brush border membrane transport of phosphate in X-linked hypophosphatemic (Hyp) mice.
    Kiebzak GM; Dousa TP
    Endocrinology; 1985 Aug; 117(2):613-9. PubMed ID: 4017950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of Mendelian mutation on renal sulfate and phosphate transport in man and mouse.
    Cole DE; Scriver CR
    Pediatr Res; 1984 Jan; 18(1):25-9. PubMed ID: 6701031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered proximal tubule glucose metabolism in X-linked hypophosphatemic mice.
    Capparelli AW; Roh D; Dhiman JK; Jo OD; Yanagawa N
    Endocrinology; 1992 Jan; 130(1):328-34. PubMed ID: 1309337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. X-linked hypophosphatemic mice are not hypersensitive to parathyroid hormone.
    Kiebzak GM; Meyer RA
    Endocrinology; 1982 Mar; 110(3):1030-6. PubMed ID: 6276150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the mechanism for abnormal renal 25-hydroxyvitamin D3-1-hydroxylase activity in the X-linked Hyp mouse.
    Tenenhouse HS
    Endocrinology; 1984 Aug; 115(2):634-9. PubMed ID: 6086274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abnormal regulation of 25-hydroxyvitamin D3-1 alpha-hydroxylase activity by calcium and calcitonin in renal cortex from hypophosphatemic (Hyp) mice.
    Fukase M; Avioli LV; Birge SJ; Chase LR
    Endocrinology; 1984 Apr; 114(4):1203-7. PubMed ID: 6705736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The renal phosphate transport defect in normal mice parabiosed to X-linked hypophosphatemic mice persists after parathyroidectomy.
    Meyer RA; Tenenhouse HS; Meyer MH; Klugerman AH
    J Bone Miner Res; 1989 Aug; 4(4):523-32. PubMed ID: 2816501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abnormal parathyroid hormone stimulation of 25-hydroxyvitamin D-1 alpha-hydroxylase activity in the hypophosphatemic mouse. Evidence for a generalized defect of vitamin D metabolism.
    Nesbitt T; Drezner MK; Lobaugh B
    J Clin Invest; 1986 Jan; 77(1):181-7. PubMed ID: 3753708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for an intrinsic renal tubular defect in mice with genetic hypophosphatemic rickets.
    Cowgill LD; Goldfarb S; Lau K; Slatopolsky E; Agus ZS
    J Clin Invest; 1979 Jun; 63(6):1203-10. PubMed ID: 221535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Abnormal tubular adaptation to dietary Pi restriction in X-linked hypophosphatemic mice.
    Mühlbauer RC; Bonjour JP; Fleisch H
    Am J Physiol; 1982 Apr; 242(4):F353-9. PubMed ID: 6895977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sodium-phosphate transporter adaptation to dietary phosphate deprivation in normal and hypophosphatemic mice.
    Collins JF; Bulus N; Ghishan FK
    Am J Physiol; 1995 Jun; 268(6 Pt 1):G917-24. PubMed ID: 7611412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Renal 25-hydroxyvitamin D-1 alpha-hydroxylase activity and mitochondrial phosphate transport in Hyp mice.
    Carpenter TO; Shiratori T
    Am J Physiol; 1990 Dec; 259(6 Pt 1):E814-21. PubMed ID: 2260650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isoproterenol increases renal tubular reabsorption of phosphate in X-linked hypophosphatemic (Hyp) mice.
    Thornton LR; Meyer MH; Meyer RA
    Miner Electrolyte Metab; 1999; 25(3):204-9. PubMed ID: 10436407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Establishment of a parathyroid hormone-responsive phosphate transport system in vitro using cultured renal cells.
    Kinoshita Y; Fukase M; Miyauchi A; Takenaka M; Nakada N; Fujita T
    Endocrinology; 1986 Nov; 119(5):1954-63. PubMed ID: 3021432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Primary cultures of renal epithelial cells from X-linked hypophosphatemic (Hyp) mice express defects in phosphate transport and vitamin D metabolism.
    Bell CL; Tenenhouse HS; Scriver CR
    Am J Hum Genet; 1988 Sep; 43(3):293-303. PubMed ID: 3414685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.