These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 30342723)

  • 1. Electrochemical Bioreactor Technology for Biocatalysis and Microbial Electrosynthesis.
    Morrison C; Heitmann E; Armiger W; Dodds D; Koffas M
    Adv Appl Microbiol; 2018; 105():51-86. PubMed ID: 30342723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved strategies for electrochemical 1,4-NAD(P)H
    Morrison CS; Armiger WB; Dodds DR; Dordick JS; Koffas MAG
    Biotechnol Adv; 2018; 36(1):120-131. PubMed ID: 29030132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Progress and Perspectives on Electrochemical Regeneration of Reduced Nicotinamide Adenine Dinucleotide (NADH).
    Immanuel S; Sivasubramanian R; Gul R; Dar MA
    Chem Asian J; 2020 Dec; 15(24):4256-4270. PubMed ID: 33164351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved soluble expression and use of recombinant human renalase.
    Morrison CS; Paskaleva EE; Rios MA; Beusse TR; Blair EM; Lin LQ; Hu JR; Gorby AH; Dodds DR; Armiger WB; Dordick JS; Koffas MAG
    PLoS One; 2020; 15(11):e0242109. PubMed ID: 33180865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. H₂-driven cofactor regeneration with NAD(P)⁺-reducing hydrogenases.
    Lauterbach L; Lenz O; Vincent KA
    FEBS J; 2013 Jul; 280(13):3058-68. PubMed ID: 23497170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical Reduction of Carbon Dioxide to Value-Added Products: The Electrocatalyst and Microbial Electrosynthesis.
    Chen Z; Wang X; Liu L
    Chem Rec; 2019 Jul; 19(7):1272-1282. PubMed ID: 30298975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic response of Pseudomonas putida during redox biocatalysis in the presence of a second octanol phase.
    Blank LM; Ionidis G; Ebert BE; Bühler B; Schmid A
    FEBS J; 2008 Oct; 275(20):5173-90. PubMed ID: 18803670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox cofactor engineering in industrial microorganisms: strategies, recent applications and future directions.
    Liu J; Li H; Zhao G; Caiyin Q; Qiao J
    J Ind Microbiol Biotechnol; 2018 May; 45(5):313-327. PubMed ID: 29582241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subtoxic product levels limit the epoxidation capacity of recombinant E. coli by increasing microbial energy demands.
    Kuhn D; Fritzsch FS; Zhang X; Wendisch VF; Blank LM; Bühler B; Schmid A
    J Biotechnol; 2013 Jan; 163(2):194-203. PubMed ID: 22922011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox Biocatalysis: Quantitative Comparisons of Nicotinamide Cofactor Regeneration Methods.
    Sharma VK; Hutchison JM; Allgeier AM
    ChemSusChem; 2022 Nov; 15(22):e202200888. PubMed ID: 36129761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocatalytic hydrogenations on carbon supports.
    Thompson LA; Rowbotham JS; Reeve HA; Zor C; Grobert N; Vincent KA
    Methods Enzymol; 2020; 630():303-325. PubMed ID: 31931991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nicotinamide adenine dinucleotide as a photocatalyst.
    Kim J; Lee SH; Tieves F; Paul CE; Hollmann F; Park CB
    Sci Adv; 2019 Jul; 5(7):eaax0501. PubMed ID: 31334353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laminar flow-based electrochemical microreactor for efficient regeneration of nicotinamide cofactors for biocatalysis.
    Yoon SK; Choban ER; Kane C; Tzedakis T; Kenis PJ
    J Am Chem Soc; 2005 Aug; 127(30):10466-7. PubMed ID: 16045315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymes as modular catalysts for redox half-reactions in H2-powered chemical synthesis: from biology to technology.
    Reeve HA; Ash PA; Park H; Huang A; Posidias M; Tomlinson C; Lenz O; Vincent KA
    Biochem J; 2017 Jan; 474(2):215-230. PubMed ID: 28062838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New approaches to NAD(P)H regeneration in the biosynthesis systems.
    Han L; Liang B
    World J Microbiol Biotechnol; 2018 Sep; 34(10):141. PubMed ID: 30203299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial electrochemical platform for the production of renewable fuels and chemicals.
    Chu N; Liang Q; Jiang Y; Zeng RJ
    Biosens Bioelectron; 2020 Feb; 150():111922. PubMed ID: 31786022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human Urine-Fueled Light-Driven NADH Regeneration for Redox Biocatalysis.
    Choi WS; Lee SH; Ko JW; Park CB
    ChemSusChem; 2016 Jul; 9(13):1559-64. PubMed ID: 27198582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial catalyzed electrochemical systems: a bio-factory with multi-facet applications.
    Venkata Mohan S; Velvizhi G; Vamshi Krishna K; Lenin Babu M
    Bioresour Technol; 2014 Aug; 165():355-64. PubMed ID: 24791713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nicotinamide adenine dinucleotide hydrogen regeneration in a microbial electrosynthesis system by Enterobacter aerogenes.
    Barin R; Biria D; Ali Asadollahi M
    Bioelectrochemistry; 2023 Feb; 149():108309. PubMed ID: 36283190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering NAD+ availability for Escherichia coli whole-cell biocatalysis: a case study for dihydroxyacetone production.
    Zhou YJ; Yang W; Wang L; Zhu Z; Zhang S; Zhao ZK
    Microb Cell Fact; 2013 Nov; 12():103. PubMed ID: 24209782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.