These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 30342786)
1. Applications of thermal desorption coupled to comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry for hydrocarbon fingerprinting of hydraulically fractured shale rocks. Piotrowski PK; Tasker TL; Burgos WD; Dorman FL J Chromatogr A; 2018 Dec; 1579():99-105. PubMed ID: 30342786 [TBL] [Abstract][Full Text] [Related]
2. Elucidating Environmental Fingerprinting Mechanisms of Unconventional Gas Development through Hydrocarbon Analysis. Piotrowski PK; Weggler BA; Yoxtheimer DA; Kelly CN; Barth-Naftilan E; Saiers JE; Dorman FL Anal Chem; 2018 Apr; 90(8):5466-5473. PubMed ID: 29580048 [TBL] [Abstract][Full Text] [Related]
3. Evaluating a groundwater supply contamination incident attributed to Marcellus Shale gas development. Llewellyn GT; Dorman F; Westland JL; Yoxtheimer D; Grieve P; Sowers T; Humston-Fulmer E; Brantley SL Proc Natl Acad Sci U S A; 2015 May; 112(20):6325-30. PubMed ID: 25941400 [TBL] [Abstract][Full Text] [Related]
4. Observations of the release of non-methane hydrocarbons from fractured shale. Sommariva R; Blake RS; Cuss RJ; Cordell RL; Harrington JF; White IR; Monks PS Environ Sci Technol; 2014; 48(15):8891-6. PubMed ID: 24978099 [TBL] [Abstract][Full Text] [Related]
5. Review of the scientific evidence to support environmental risk assessment of shale gas development in the UK. Prpich G; Coulon F; Anthony EJ Sci Total Environ; 2016 Sep; 563-564():731-40. PubMed ID: 26627123 [TBL] [Abstract][Full Text] [Related]
6. Insight into unresolved complex mixtures of aromatic hydrocarbons in heavy oil via two-dimensional gas chromatography coupled with time-of-flight mass spectrometry analysis. Weng N; Wan S; Wang H; Zhang S; Zhu G; Liu J; Cai D; Yang Y J Chromatogr A; 2015 Jun; 1398():94-107. PubMed ID: 25939738 [TBL] [Abstract][Full Text] [Related]
7. Predominance and Metabolic Potential of Halanaerobium spp. in Produced Water from Hydraulically Fractured Marcellus Shale Wells. Lipus D; Vikram A; Ross D; Bain D; Gulliver D; Hammack R; Bibby K Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28159795 [TBL] [Abstract][Full Text] [Related]
8. Effect of maturity and mineralogy on fluid-rock reactions in the Marcellus Shale. Pilewski J; Sharma S; Agrawal V; Hakala JA; Stuckman MY Environ Sci Process Impacts; 2019 May; 21(5):845-855. PubMed ID: 30840020 [TBL] [Abstract][Full Text] [Related]
9. Monitoring concentration and isotopic composition of methane in groundwater in the Utica Shale hydraulic fracturing region of Ohio. Claire Botner E; Townsend-Small A; Nash DB; Xu X; Schimmelmann A; Miller JH Environ Monit Assess; 2018 May; 190(6):322. PubMed ID: 29721622 [TBL] [Abstract][Full Text] [Related]
10. Methane in groundwater before, during, and after hydraulic fracturing of the Marcellus Shale. Barth-Naftilan E; Sohng J; Saiers JE Proc Natl Acad Sci U S A; 2018 Jul; 115(27):6970-6975. PubMed ID: 29915033 [TBL] [Abstract][Full Text] [Related]
11. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States. Vengosh A; Jackson RB; Warner N; Darrah TH; Kondash A Environ Sci Technol; 2014; 48(15):8334-48. PubMed ID: 24606408 [TBL] [Abstract][Full Text] [Related]
12. Methanogenic archaea in marcellus shale: a possible mechanism for enhanced gas recovery in unconventional shale resources. Tucker YT; Kotcon J; Mroz T Environ Sci Technol; 2015 Jun; 49(11):7048-55. PubMed ID: 25924080 [TBL] [Abstract][Full Text] [Related]
13. Chemical and Reactive Transport Processes Associated with Hydraulic Fracturing of Unconventional Oil/Gas Shales. Jew AD; Druhan JL; Ihme M; Kovscek AR; Battiato I; Kaszuba JP; Bargar JR; Brown GE Chem Rev; 2022 May; 122(9):9198-9263. PubMed ID: 35404590 [TBL] [Abstract][Full Text] [Related]
15. Temporal changes in microbial ecology and geochemistry in produced water from hydraulically fractured Marcellus shale gas wells. Cluff MA; Hartsock A; MacRae JD; Carter K; Mouser PJ Environ Sci Technol; 2014 Jun; 48(11):6508-17. PubMed ID: 24803059 [TBL] [Abstract][Full Text] [Related]
16. Application of isotopic and geochemical signals in unconventional oil and gas reservoir produced waters toward characterizing in situ geochemical fluid-shale reactions. Phan TT; Hakala JA; Sharma S Sci Total Environ; 2020 Apr; 714():136867. PubMed ID: 32018991 [TBL] [Abstract][Full Text] [Related]
17. Characterization of the chemicals used in hydraulic fracturing fluids for wells located in the Marcellus Shale Play. Chen H; Carter KE J Environ Manage; 2017 Sep; 200():312-324. PubMed ID: 28591666 [TBL] [Abstract][Full Text] [Related]
18. Organic sulfur fingerprint indicates continued injection fluid signature 10 months after hydraulic fracturing. Luek JL; Harir M; Schmitt-Kopplin P; Mouser PJ; Gonsior M Environ Sci Process Impacts; 2019 Feb; 21(2):206-213. PubMed ID: 30303509 [TBL] [Abstract][Full Text] [Related]
19. The water footprint of hydraulic fracturing for shale gas extraction in China. Gao J; Zou C; Zhang X; Guo W; Yu R; Ni Y; Liu D; Kang L; Liu Y; Kondash A; Vengosh A Sci Total Environ; 2024 Jan; 907():168135. PubMed ID: 37890628 [TBL] [Abstract][Full Text] [Related]