These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 3034279)

  • 21. Cyclopropane fatty acids improve Escherichia coli survival in acidified minimal media by reducing membrane permeability to H+ and enhanced ability to extrude H+.
    Shabala L; Ross T
    Res Microbiol; 2008; 159(6):458-61. PubMed ID: 18562182
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Proton motive force-dependent and -independent protein translocation revealed by an efficient in vitro assay system of Escherichia coli.
    Yamada H; Tokuda H; Mizushima S
    J Biol Chem; 1989 Jan; 264(3):1723-8. PubMed ID: 2536371
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of protonophore on growth of Escherichia coli.
    Nakano S; Onoda T
    J Basic Microbiol; 1989; 29(3):163-9. PubMed ID: 2664119
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Stimulating effect of sodium ions on Escherichia coli growth in the presence of protonophore uncoupler].
    Avetisian AV
    Biokhimiia; 1996 Mar; 61(3):555-8. PubMed ID: 8724610
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Maintenance of a neutral cytoplasmic pH is not obligatory for growth of Escherichia coli and Streptococcus faecalis at an alkaline pH.
    Mugikura S; Nishikawa M; Igarashi K; Kobayashi H
    J Biochem; 1990 Jul; 108(1):86-91. PubMed ID: 2121723
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel alkali-tolerant Yarrowia lipolytica strain for dissecting Na+-coupled phosphate transport systems in yeasts.
    Zvyagilskaya R; Persson BL
    Cell Biol Int; 2005 Jan; 29(1):87-94. PubMed ID: 15763505
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetics of lactose transport into Escherichia coli in the presence and absence of a protonmotive force.
    Page MG; West IC
    FEBS Lett; 1980 Nov; 120(2):187-91. PubMed ID: 7002613
    [No Abstract]   [Full Text] [Related]  

  • 28. The influence of NaCl and carbonylcyanide-m-chlorophenylhydrazone on the production of extracellular proteases in a marine Vibrio strain.
    Kim YJ
    J Microbiol; 2004 Jun; 42(2):156-9. PubMed ID: 15357312
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A role of H+ flux in active Ca2+ transport into sarcoplasmic reticulum vesicles. I. Effect of an artificially imposed H+ gradient on Ca2+ uptake.
    Ueno T; Sekine T
    J Biochem; 1981 Apr; 89(4):1239-46. PubMed ID: 6265434
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Osmotic adaptation of Escherichia coli with a negligible proton motive force in the presence of carbonyl cyanide m-chlorophenylhydrazone.
    Ohyama T; Mugikura S; Nishikawa M; Igarashi K; Kobayashi H
    J Bacteriol; 1992 May; 174(9):2922-8. PubMed ID: 1314804
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Methylammonium uptake by Escherichia coli: evidence for a bacterial NH4+ transport system.
    Stevenson R; Silver S
    Biochem Biophys Res Commun; 1977 Apr; 75(4):1133-9. PubMed ID: 16600
    [No Abstract]   [Full Text] [Related]  

  • 32. Mode of action of colicin Ia: effect of colicin on the Escherichia coli proton electrochemical gradient.
    Tokuda H; Konisky J
    Proc Natl Acad Sci U S A; 1978 Jun; 75(6):2579-83. PubMed ID: 26912
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Penetration of nalidixic acid into Escherichia coli K-12 cells.
    Hrebenda J; Brzostek K; Heleszko H
    Acta Microbiol Pol; 1987; 36(1-2):67-72. PubMed ID: 2442974
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Artificially induced active transport of amino acid driven by the efflux of a sugar via a heterologous transport system in de-energized Escherichia coli.
    Bentaboulet M; Robin A; Kepes A
    Biochem J; 1979 Jan; 178(1):103-7. PubMed ID: 35159
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ferrichrome transport in inner membrane vesicles of Escherichia coli K12.
    Negrin RS; Neilands JB
    J Biol Chem; 1978 Apr; 253(7):2339-42. PubMed ID: 344313
    [No Abstract]   [Full Text] [Related]  

  • 36. Role of Na+ and Li+ in thiomethylgalactoside transport by the melibiose transport system of Escherichia coli.
    Lopilato J; Tsuchiya T; Wilson TH
    J Bacteriol; 1978 Apr; 134(1):147-56. PubMed ID: 25882
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Accumulation of rifampicin by Escherichia coli and Staphylococcus aureus.
    Williams KJ; Piddock LJ
    J Antimicrob Chemother; 1998 Nov; 42(5):597-603. PubMed ID: 9848443
    [TBL] [Abstract][Full Text] [Related]  

  • 38. L-carnitine uptake by Escherichia coli.
    Jung H; Jung K; Kleber HP
    J Basic Microbiol; 1990; 30(7):507-14. PubMed ID: 2266491
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Energy coupling in the uptake of hexose phosphates by Escherichia coli.
    Essenberg RC; Kornberg HL
    J Biol Chem; 1975 Feb; 250(3):939-45. PubMed ID: 46228
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transport of L-Lactate, D-Lactate, and glycolate by the LldP and GlcA membrane carriers of Escherichia coli.
    Núñez MF; Kwon O; Wilson TH; Aguilar J; Baldoma L; Lin EC
    Biochem Biophys Res Commun; 2002 Jan; 290(2):824-9. PubMed ID: 11785976
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.