BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 30342880)

  • 21. Utilizing a Comprehensive Immunoprecipitation Enrichment System to Identify an Endogenous Post-translational Modification Profile for Target Proteins.
    Horita H; Law A; Middleton K
    J Vis Exp; 2018 Jan; (131):. PubMed ID: 29364248
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New Opportunities and Challenges of Smart Polymers in Post-Translational Modification Proteomics.
    Qing G; Lu Q; Xiong Y; Zhang L; Wang H; Li X; Liang X; Sun T
    Adv Mater; 2017 May; 29(20):. PubMed ID: 28112833
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lysine-specific post-translational modifications of proteins in the life cycle of viruses.
    Loboda AP; Soond SM; Piacentini M; Barlev NA
    Cell Cycle; 2019 Sep; 18(17):1995-2005. PubMed ID: 31291816
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of Host-Mediated Post-Translational Modifications (PTMs) in RNA Virus Pathogenesis.
    Kumar R; Mehta D; Mishra N; Nayak D; Sunil S
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33396899
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The involvement of post-translational modifications in cardiovascular pathologies: Focus on SUMOylation, neddylation, succinylation, and prenylation.
    Gao J; Shao K; Chen X; Li Z; Liu Z; Yu Z; Aung LHH; Wang Y; Li P
    J Mol Cell Cardiol; 2020 Jan; 138():49-58. PubMed ID: 31751566
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Targeting the Post-translational Proteome with Intrabodies.
    Cattaneo A; Chirichella M
    Trends Biotechnol; 2019 Jun; 37(6):578-591. PubMed ID: 30577991
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proteome-Level Analysis Indicates Global Mechanisms for Post-Translational Regulation of RRM Domains.
    Sloutsky R; Naegle KM
    J Mol Biol; 2018 Jan; 430(1):41-44. PubMed ID: 29146174
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Post-translational modifications and their applications in eye research (Review).
    Chen BJ; Lam TC; Liu LQ; To CH
    Mol Med Rep; 2017 Jun; 15(6):3923-3935. PubMed ID: 28487982
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The roles of post-translational modifications in the context of protein interaction networks.
    Duan G; Walther D
    PLoS Comput Biol; 2015 Feb; 11(2):e1004049. PubMed ID: 25692714
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crosstalk of intracellular post-translational modifications in cancer.
    Wu Z; Huang R; Yuan L
    Arch Biochem Biophys; 2019 Nov; 676():108138. PubMed ID: 31606391
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Current Methods of Post-Translational Modification Analysis and Their Applications in Blood Cancers.
    Dunphy K; Dowling P; Bazou D; O'Gorman P
    Cancers (Basel); 2021 Apr; 13(8):. PubMed ID: 33923680
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Involvement of Post-Translational Modifications in Alzheimer's Disease.
    Marcelli S; Corbo M; Iannuzzi F; Negri L; Blandini F; Nistico R; Feligioni M
    Curr Alzheimer Res; 2018 Feb; 15(4):313-335. PubMed ID: 28474569
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantitative mass spectrometry of posttranslational modifications: keys to confidence.
    Hennrich ML; Gavin AC
    Sci Signal; 2015 Apr; 8(371):re5. PubMed ID: 25852188
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Targeting p38 MAP kinase signaling in cancer through post-translational modifications.
    Zou X; Blank M
    Cancer Lett; 2017 Jan; 384():19-26. PubMed ID: 27725227
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Post-translational inhibition of YAP oncogene expression by 4-hydroxynonenal in bladder cancer cells.
    Cucci MA; Compagnone A; Daga M; Grattarola M; Ullio C; Roetto A; Palmieri A; Rosa AC; Argenziano M; Cavalli R; Simile MM; Pascale RM; Dianzani C; Barrera G; Pizzimenti S
    Free Radic Biol Med; 2019 Sep; 141():205-219. PubMed ID: 31207288
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Targeted DNA and RNA Sequencing of Paired Urothelial and Squamous Bladder Cancers Reveals Discordant Genomic and Transcriptomic Events and Unique Therapeutic Implications.
    Hovelson DH; Udager AM; McDaniel AS; Grivas P; Palmbos P; Tamura S; Lazo de la Vega L; Palapattu G; Veeneman B; El-Sawy L; Sadis SE; Morgan TM; Montgomery JS; Weizer AZ; Day KC; Neamati N; Liebert M; Keller ET; Day ML; Mehra R; Tomlins SA
    Eur Urol; 2018 Dec; 74(6):741-753. PubMed ID: 30033047
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Post-translational modification of plant-made foreign proteins; glycosylation and beyond.
    Webster DE; Thomas MC
    Biotechnol Adv; 2012; 30(2):410-8. PubMed ID: 21839159
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification, Quantification, and Site Localization of Protein Posttranslational Modifications via Mass Spectrometry-Based Proteomics.
    Ke M; Shen H; Wang L; Luo S; Lin L; Yang J; Tian R
    Adv Exp Med Biol; 2016; 919():345-382. PubMed ID: 27975226
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein Post-Translational Modification Crosstalk in Acute Myeloid Leukemia Calls for Action.
    Hernandez-Valladares M; Wangen R; Berven FS; Guldbrandsen A
    Curr Med Chem; 2019; 26(28):5317-5337. PubMed ID: 31241430
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional analysis tools for post-translational modification: a post-translational modification database for analysis of proteins and metabolic pathways.
    Cruz ER; Nguyen H; Nguyen T; Wallace IS
    Plant J; 2019 Sep; 99(5):1003-1013. PubMed ID: 31034103
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.