These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 30343036)

  • 1. Clone of plipastatin biosynthetic gene cluster by transformation-associated recombination technique and high efficient expression in model organism Bacillus subtilis.
    Hu Y; Nan F; Maina SW; Guo J; Wu S; Xin Z
    J Biotechnol; 2018 Dec; 288():1-8. PubMed ID: 30343036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction and description of a constitutive plipastatin mono-producing Bacillus subtilis.
    Vahidinasab M; Lilge L; Reinfurt A; Pfannstiel J; Henkel M; Morabbi Heravi K; Hausmann R
    Microb Cell Fact; 2020 Nov; 19(1):205. PubMed ID: 33167976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of the non-ribosomal peptide plipastatin in Bacillus subtilis regulated by three relevant gene blocks assembled in a single movable DNA segment.
    Tsuge K; Matsui K; Itaya M
    J Biotechnol; 2007 May; 129(4):592-603. PubMed ID: 17376553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation of a gene essential for biosynthesis of the lipopeptide antibiotics plipastatin B1 and surfactin in Bacillus subtilis YB8.
    Tsuge K; Ano T; Shoda M
    Arch Microbiol; 1996 Apr; 165(4):243-51. PubMed ID: 8639027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mining New Plipastatins and Increasing the Total Yield Using CRISPR/Cas9 in Genome-Modified
    Zou D; Maina SW; Zhang F; Yan Z; Ding L; Shao Y; Xin Z
    J Agric Food Chem; 2020 Oct; 68(41):11358-11367. PubMed ID: 32930578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of degQ gene and its effect on lipopeptide production as well as formation of secretory proteases in Bacillus subtilis strains.
    Lilge L; Vahidinasab M; Adiek I; Becker P; Kuppusamy Nesamani C; Treinen C; Hoffmann M; Morabbi Heravi K; Henkel M; Hausmann R
    Microbiologyopen; 2021 Oct; 10(5):e1241. PubMed ID: 34713601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The genes degQ, pps, and lpa-8 (sfp) are responsible for conversion of Bacillus subtilis 168 to plipastatin production.
    Tsuge K; Ano T; Hirai M; Nakamura Y; Shoda M
    Antimicrob Agents Chemother; 1999 Sep; 43(9):2183-92. PubMed ID: 10471562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plipastatin and surfactin coproduction by Bacillus subtilis pB2-L and their effects on microorganisms.
    Gao L; Han J; Liu H; Qu X; Lu Z; Bie X
    Antonie Van Leeuwenhoek; 2017 Aug; 110(8):1007-1018. PubMed ID: 28477175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of pps disruption and constitutive expression of srfA on surfactin productivity, spreading and antagonistic properties of Bacillus subtilis 168 derivatives.
    Coutte F; Leclère V; Béchet M; Guez JS; Lecouturier D; Chollet-Imbert M; Dhulster P; Jacques P
    J Appl Microbiol; 2010 Aug; 109(2):480-491. PubMed ID: 20148996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scarless Genomic Point Mutation to Construct a
    Jeong DE; So Y; Lim H; Park SH; Choi SK
    J Microbiol Biotechnol; 2018 Jun; 28(6):1030-1036. PubMed ID: 29642284
    [No Abstract]   [Full Text] [Related]  

  • 11. Isolation and characterization of a halotolerant Bacillus subtilis BBK-1 which produces three kinds of lipopeptides: bacillomycin L, plipastatin, and surfactin.
    Roongsawang N; Thaniyavarn J; Thaniyavarn S; Kameyama T; Haruki M; Imanaka T; Morikawa M; Kanaya S
    Extremophiles; 2002 Dec; 6(6):499-506. PubMed ID: 12486459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted isolation of a designated region of the Bacillus subtilis genome by recombinational transfer.
    Tomita S; Tsuge K; Kikuchi Y; Itaya M
    Appl Environ Microbiol; 2004 Apr; 70(4):2508-13. PubMed ID: 15066851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Module and individual domain deletions of NRPS to produce plipastatin derivatives in Bacillus subtilis.
    Gao L; Guo J; Fan Y; Ma Z; Lu Z; Zhang C; Zhao H; Bie X
    Microb Cell Fact; 2018 May; 17(1):84. PubMed ID: 29855381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research on the Regulation of Plipastatin Production by the Quorum-Sensing ComQXPA System of
    Zhou J; Wu G; Zheng J; Abdalmegeed D; Wang M; Sun S; Sedjoah RA; Shao Y; Sun S; Xin Z
    J Agric Food Chem; 2023 Jul; 71(28):10683-10692. PubMed ID: 37427858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis.
    Li Y; Li Z; Yamanaka K; Xu Y; Zhang W; Vlamakis H; Kolter R; Moore BS; Qian PY
    Sci Rep; 2015 Mar; 5():9383. PubMed ID: 25807046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antagonistic mechanism of iturin A and plipastatin A from Bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum.
    Gong AD; Li HP; Yuan QS; Song XS; Yao W; He WJ; Zhang JB; Liao YC
    PLoS One; 2015; 10(2):e0116871. PubMed ID: 25689464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New approach for the detection of non-ribosomal peptide synthetase genes in Bacillus strains by polymerase chain reaction.
    Tapi A; Chollet-Imbert M; Scherens B; Jacques P
    Appl Microbiol Biotechnol; 2010 Feb; 85(5):1521-31. PubMed ID: 19730852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Translocation of the thioesterase domain for the redesign of plipastatin synthetase.
    Gao L; Liu H; Ma Z; Han J; Lu Z; Dai C; Lv F; Bie X
    Sci Rep; 2016 Dec; 6():38467. PubMed ID: 28009004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simple and Rapid Non-ribosomal Peptide Synthetase Gene Assembly Using the SEAM-OGAB Method.
    Jagadeesh V; Yoshida T; Uraji M; Okahashi N; Matsuda F; Vavricka CJ; Tsuge K; Kondo A
    ACS Synth Biol; 2023 Jan; 12(1):305-318. PubMed ID: 36563322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Integrated Pipeline and Overexpression of a Novel Efflux Transporter, YoeA, Significantly Increases Plipastatin Production in
    Wang M; Zheng J; Sun S; Wu Z; Shao Y; Xiang J; Yin C; Sedjoah RCAA; Xin Z
    Foods; 2024 Jun; 13(11):. PubMed ID: 38891014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.