BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 30343047)

  • 1. Efficient production of 3-hydroxypropionate from fatty acids feedstock in Escherichia coli.
    Liu B; Xiang S; Zhao G; Wang B; Ma Y; Liu W; Tao Y
    Metab Eng; 2019 Jan; 51():121-130. PubMed ID: 30343047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient bioconversion of raspberry ketone in Escherichia coli using fatty acids feedstocks.
    Chang C; Liu B; Bao Y; Tao Y; Liu W
    Microb Cell Fact; 2021 Mar; 20(1):68. PubMed ID: 33706766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Malonyl-CoA pathway: a promising route for 3-hydroxypropionate biosynthesis.
    Liu C; Ding Y; Xian M; Liu M; Liu H; Ma Q; Zhao G
    Crit Rev Biotechnol; 2017 Nov; 37(7):933-941. PubMed ID: 28078904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional balance between enzymes in malonyl-CoA pathway for 3-hydroxypropionate biosynthesis.
    Liu C; Ding Y; Zhang R; Liu H; Xian M; Zhao G
    Metab Eng; 2016 Mar; 34():104-111. PubMed ID: 26791242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ancillary contributions of heterologous biotin protein ligase and carbonic anhydrase for CO
    Lian H; Zeldes BM; Lipscomb GL; Hawkins AB; Han Y; Loder AJ; Nishiyama D; Adams MW; Kelly RM
    Biotechnol Bioeng; 2016 Dec; 113(12):2652-2660. PubMed ID: 27315782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway.
    Kildegaard KR; Jensen NB; Schneider K; Czarnotta E; Özdemir E; Klein T; Maury J; Ebert BE; Christensen HB; Chen Y; Kim IK; Herrgård MJ; Blank LM; Forster J; Nielsen J; Borodina I
    Microb Cell Fact; 2016 Mar; 15():53. PubMed ID: 26980206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of 3-hydroxypropionate biosynthesis in vitro by partial introduction of the 3-hydroxypropionate/4-hydroxybutyrate cycle from Metallosphaera sedula.
    Ye Z; Li X; Cheng Y; Liu Z; Tan G; Zhu F; Fu S; Deng Z; Liu T
    J Ind Microbiol Biotechnol; 2016 Sep; 43(9):1313-21. PubMed ID: 27300329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnesium starvation improves production of malonyl-CoA-derived metabolites in Escherichia coli.
    Tokuyama K; Toya Y; Matsuda F; Cress BF; Koffas MAG; Shimizu H
    Metab Eng; 2019 Mar; 52():215-223. PubMed ID: 30529031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient biosynthesis of 3-hydroxypropionic acid from ethanol in metabolically engineered Escherichia coli.
    Lu J; Wang Y; Xu M; Fei Q; Gu Y; Luo Y; Wu H
    Bioresour Technol; 2022 Nov; 363():127907. PubMed ID: 36087655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in the metabolic engineering of microorganisms for the production of 3-hydroxypropionic acid as C3 platform chemical.
    Valdehuesa KN; Liu H; Nisola GM; Chung WJ; Lee SH; Park SJ
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3309-21. PubMed ID: 23494623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissection of malonyl-coenzyme A reductase of Chloroflexus aurantiacus results in enzyme activity improvement.
    Liu C; Wang Q; Xian M; Ding Y; Zhao G
    PLoS One; 2013; 8(9):e75554. PubMed ID: 24073271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced production of 3-hydroxypropionic acid from glucose via malonyl-CoA pathway by engineered Escherichia coli.
    Cheng Z; Jiang J; Wu H; Li Z; Ye Q
    Bioresour Technol; 2016 Jan; 200():897-904. PubMed ID: 26606325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased 3-hydroxypropionic acid production from glycerol, by modification of central metabolism in Escherichia coli.
    Tokuyama K; Ohno S; Yoshikawa K; Hirasawa T; Tanaka S; Furusawa C; Shimizu H
    Microb Cell Fact; 2014 May; 13():64. PubMed ID: 24885133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyperproduction of 3-hydroxypropionate by Halomonas bluephagenesis.
    Jiang XR; Yan X; Yu LP; Liu XY; Chen GQ
    Nat Commun; 2021 Mar; 12(1):1513. PubMed ID: 33686068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iterative genome editing of Escherichia coli for 3-hydroxypropionic acid production.
    Liu R; Liang L; Choudhury A; Bassalo MC; Garst AD; Tarasava K; Gill RT
    Metab Eng; 2018 May; 47():303-313. PubMed ID: 29665411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatty acid from the renewable sources: a promising feedstock for the production of biofuels and biobased chemicals.
    Liu H; Cheng T; Xian M; Cao Y; Fang F; Zou H
    Biotechnol Adv; 2014; 32(2):382-9. PubMed ID: 24361277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combinatorial pathway engineering using type I-E CRISPR interference.
    Tarasava K; Liu R; Garst A; Gill RT
    Biotechnol Bioeng; 2018 Jul; 115(7):1878-1883. PubMed ID: 29537074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing 3-hydroxypropionic acid production in combination with sugar supply engineering by cell surface-display and metabolic engineering of Schizosaccharomyces pombe.
    Takayama S; Ozaki A; Konishi R; Otomo C; Kishida M; Hirata Y; Matsumoto T; Tanaka T; Kondo A
    Microb Cell Fact; 2018 Nov; 17(1):176. PubMed ID: 30424766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of fuels and chemicals from renewable resources using engineered Escherichia coli.
    Zhao C; Zhang Y; Li Y
    Biotechnol Adv; 2019 Nov; 37(7):107402. PubMed ID: 31170447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of Escherichia coli for the production of hydroxy fatty acids from glucose.
    Cao Y; Cheng T; Zhao G; Niu W; Guo J; Xian M; Liu H
    BMC Biotechnol; 2016 Mar; 16():26. PubMed ID: 26956722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.