BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 30343048)

  • 21. Systems metabolic engineering of Bacillus subtilis for efficient biosynthesis of 5-methyltetrahydrofolate.
    Yang H; Liu Y; Li J; Liu L; Du G; Chen J
    Biotechnol Bioeng; 2020 Jul; 117(7):2116-2130. PubMed ID: 32170863
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assembly of pathway enzymes by engineering functional membrane microdomain components for improved N-acetylglucosamine synthesis in Bacillus subtilis.
    Lv X; Zhang C; Cui S; Xu X; Wang L; Li J; Du G; Chen J; Ledesma-Amaro R; Liu L
    Metab Eng; 2020 Sep; 61():96-105. PubMed ID: 32502621
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancement of riboflavin production in Bacillus subtilis via in vitro and in vivo metabolic engineering of pentose phosphate pathway.
    Zhang M; Zhao X; Chen X; Li M; Wang X
    Biotechnol Lett; 2021 Dec; 43(12):2209-2216. PubMed ID: 34606014
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improvement of uridine production in Bacillus subtilis by metabolic engineering.
    Wang Y; Ma R; Liu L; He L; Ban R
    Biotechnol Lett; 2018 Jan; 40(1):151-155. PubMed ID: 29038923
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A dynamic pathway analysis approach reveals a limiting futile cycle in N-acetylglucosamine overproducing Bacillus subtilis.
    Liu Y; Link H; Liu L; Du G; Chen J; Sauer U
    Nat Commun; 2016 Jun; 7():11933. PubMed ID: 27324299
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An optimal glucose feeding strategy integrated with step-wise regulation of the dissolved oxygen level improves N-acetylglucosamine production in recombinant Bacillus subtilis.
    Zhu Y; Liu Y; Li J; Shin HD; Du G; Liu L; Chen J
    Bioresour Technol; 2015 Feb; 177():387-92. PubMed ID: 25499147
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthetic metabolic bypass for a metabolic toggle switch enhances acetyl-CoA supply for isopropanol production by Escherichia coli.
    Soma Y; Yamaji T; Matsuda F; Hanai T
    J Biosci Bioeng; 2017 May; 123(5):625-633. PubMed ID: 28214243
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Advances and prospects of Bacillus subtilis cellular factories: From rational design to industrial applications.
    Gu Y; Xu X; Wu Y; Niu T; Liu Y; Li J; Du G; Liu L
    Metab Eng; 2018 Nov; 50():109-121. PubMed ID: 29775652
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synergistic Rewiring of Carbon Metabolism and Redox Metabolism in Cytoplasm and Mitochondria of Aspergillus oryzae for Increased l-Malate Production.
    Liu J; Li J; Liu Y; Shin HD; Ledesma-Amaro R; Du G; Chen J; Liu L
    ACS Synth Biol; 2018 Sep; 7(9):2139-2147. PubMed ID: 30092627
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metabolic engineering of Bacillus subtilis for production of para-aminobenzoic acid - unexpected importance of carbon source is an advantage for space application.
    Averesch NJH; Rothschild LJ
    Microb Biotechnol; 2019 Jul; 12(4):703-714. PubMed ID: 30980511
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combinatorial promoter engineering of glucokinase and phosphoglucoisomerase for improved N-acetylglucosamine production in Bacillus subtilis.
    Ling M; Liu Y; Li J; Shin HD; Chen J; Du G; Liu L
    Bioresour Technol; 2017 Dec; 245(Pt A):1093-1102. PubMed ID: 28946392
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Elucidating central metabolic redox obstacles hindering ethanol production in Clostridium thermocellum.
    Thompson RA; Layton DS; Guss AM; Olson DG; Lynd LR; Trinh CT
    Metab Eng; 2015 Nov; 32():207-219. PubMed ID: 26497628
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolic engineering to enhance heterologous production of hyaluronic acid in Bacillus subtilis.
    Westbrook AW; Ren X; Oh J; Moo-Young M; Chou CP
    Metab Eng; 2018 May; 47():401-413. PubMed ID: 29698777
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamically Regulating Glucose Uptake to Reduce Overflow Metabolism with a Quorum-Sensing Circuit for the Efficient Synthesis of d-Pantothenic Acid in
    Yuan P; Xu M; Mao C; Zheng H; Sun D
    ACS Synth Biol; 2023 Oct; 12(10):2983-2995. PubMed ID: 37664894
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolic engineering of Bacillus subtilis for production of D-lactic acid.
    Awasthi D; Wang L; Rhee MS; Wang Q; Chauliac D; Ingram LO; Shanmugam KT
    Biotechnol Bioeng; 2018 Feb; 115(2):453-463. PubMed ID: 28986980
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modulation of culture medium confers high-specificity production of isopentenol in Bacillus subtilis.
    Phulara SC; Chaturvedi P; Chaurasia D; Diwan B; Gupta P
    J Biosci Bioeng; 2019 Apr; 127(4):458-464. PubMed ID: 30862359
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolic flux responses to genetic modification for shikimic acid production by Bacillus subtilis strains.
    Liu DF; Ai GM; Zheng QX; Liu C; Jiang CY; Liu LX; Zhang B; Liu YM; Yang C; Liu SJ
    Microb Cell Fact; 2014 Mar; 13(1):40. PubMed ID: 24628944
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biosynthesis of low-molecular-weight mannan using metabolically engineered Bacillus subtilis 168.
    Jin P; Liang Z; Li H; Chen C; Xue Y; Du Q
    Carbohydr Polym; 2021 Jan; 251():117115. PubMed ID: 33142650
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering a Central Carbon Metabolism Pathway to Increase the Intracellular Acetyl-CoA Pool in
    Song X; Diao J; Yao J; Cui J; Sun T; Chen L; Zhang W
    ACS Synth Biol; 2021 Apr; 10(4):836-846. PubMed ID: 33779148
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CRISPRi-Based Dynamic Control of Carbon Flow for Efficient
    Zhang Q; Hou Z; Ma Q; Mo X; Sun Q; Tan M; Xia L; Lin G; Yang M; Zhang Y; Xu Q; Li Y; Chen N; Xie X
    J Agric Food Chem; 2020 Mar; 68(10):3203-3213. PubMed ID: 32101421
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.