BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 30343171)

  • 21. Assessment of the uniaxial experimental parameters utilised for the mechanical testing of bovine pericardium.
    Joyce K; Rochev Y; Rahmani S
    J Mech Behav Biomed Mater; 2019 Aug; 96():27-37. PubMed ID: 31029992
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Application of finite element analysis to the design of tissue leaflets for a percutaneous aortic valve.
    Smuts AN; Blaine DC; Scheffer C; Weich H; Doubell AF; Dellimore KH
    J Mech Behav Biomed Mater; 2011 Jan; 4(1):85-98. PubMed ID: 21094482
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Collagen fiber architecture of bovine pericardium.
    Sacks MS; Chuong CJ; More R
    ASAIO J; 1994; 40(3):M632-7. PubMed ID: 8555591
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Collagen tissue treated with chitosan solutions in carbonic acid for improved biological prosthetic heart valves.
    Gallyamov MO; Chaschin IS; Khokhlova MA; Grigorev TE; Bakuleva NP; Lyutova IG; Kondratenko JE; Badun GA; Chernysheva MG; Khokhlov AR
    Mater Sci Eng C Mater Biol Appl; 2014 Apr; 37():127-40. PubMed ID: 24582232
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Brillouin confocal microscopy to determine biomechanical properties of SULEEI-treated bovine pericardium for application in cardiac surgery.
    Jannasch A; Rix J; Welzel C; Schackert G; Kirsch M; König U; Koch E; Matschke K; Tugtekin SM; Dittfeld C; Galli R
    Clin Hemorheol Microcirc; 2021; 79(1):179-192. PubMed ID: 34487036
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A structural model of passive skeletal muscle shows two reinforcement processes in resisting deformation.
    Gindre J; Takaza M; Moerman KM; Simms CK
    J Mech Behav Biomed Mater; 2013 Jun; 22():84-94. PubMed ID: 23587721
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biological and mechanical evaluation of a Bio-Hybrid scaffold for autologous valve tissue engineering.
    Jahnavi S; Saravanan U; Arthi N; Bhuvaneshwar GS; Kumary TV; Rajan S; Verma RS
    Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():59-71. PubMed ID: 28183649
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomechanical and structural properties of the explanted bioprosthetic valve leaflets.
    Purinya B; Kasyanov V; Volkolakov J; Latsis R; Tetere G
    J Biomech; 1994 Jan; 27(1):1-11. PubMed ID: 8106530
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pericardial heterograft valves: an assessment of leaflet stresses and their implications for heart valve design.
    Trowbridge EA; Crofts CE
    J Biomed Eng; 1987 Oct; 9(4):345-55. PubMed ID: 3682798
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stress/strain characteristics of porcine mitral valve tissue: parallel versus perpendicular collagen orientation.
    Kunzelman KS; Cochran RP
    J Card Surg; 1992 Mar; 7(1):71-8. PubMed ID: 1554980
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of suturing on the mechanical properties of bovine pericardium--implications for cardiac valve bioprosthesis.
    Lim KO; Cheong KC
    Med Eng Phys; 1994 Nov; 16(6):526-30. PubMed ID: 7858787
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of mechanical fatigue on commercial bioprosthetic TAVR valve mechanical and microstructural properties.
    Noble C; Hooke A; Rajotia A; Morse D; Dragomir-Daescu D; Salisbury J; Young MD; Lerman A
    J Mech Behav Biomed Mater; 2024 Jun; 154():106441. PubMed ID: 38518510
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanical behaviors of high-strength fabric composite membrane designed for cardiac valve prosthesis replacement.
    Zhou H; Wu Q; Wu L; Zhao Y
    J Mech Behav Biomed Mater; 2023 Jun; 142():105863. PubMed ID: 37116312
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cyclic loading response of bioprosthetic heart valves: effects of fixation stress state on the collagen fiber architecture.
    Wells SM; Sellaro T; Sacks MS
    Biomaterials; 2005 May; 26(15):2611-9. PubMed ID: 15585264
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Changes in the mechanical properties of chemically treated bovine pericardium after a short uniaxial cyclic test.
    Claramunt R; Alvarez-Ayuso L; García-Páez JM; Ros A; Casado MC
    Artif Organs; 2013 Feb; 37(2):183-8. PubMed ID: 23043423
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Age dependent differences in collagen alignment of glutaraldehyde fixed bovine pericardium.
    Sizeland KH; Wells HC; Higgins J; Cunanan CM; Kirby N; Hawley A; Mudie ST; Haverkamp RG
    Biomed Res Int; 2014; 2014():189197. PubMed ID: 25295250
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The bovine pericardial xenograft: III. Effect of uniaxial and sequential biaxial stress during fixation on the tensile viscoelastic properties of bovine pericardium.
    Lee JM; Ku M; Haberer SA
    J Biomed Mater Res; 1989 May; 23(5):491-506. PubMed ID: 2715162
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reducing the variability in durability of heart valve bioprostheses. Key factor for future improvement.
    Gabbay S; Welch H
    ASAIO Trans; 1988; 34(4):1022-6. PubMed ID: 3219248
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Donkey pericardium as an alternative bioprosthetic heart valve material.
    Chen S; Xu L; Liu Y; Li Q; Wang D; Wang X; Liu T
    Artif Organs; 2013 Mar; 37(3):248-55. PubMed ID: 23145868
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Zonal and directional variations in tensile properties of bovine articular cartilage with special reference to strain rate variation.
    Verteramo A; Seedhom BB
    Biorheology; 2004; 41(3-4):203-13. PubMed ID: 15299253
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.