BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 30343197)

  • 1. Comprehensive retention model for PFAS transport in subsurface systems.
    Brusseau ML; Yan N; Van Glubt S; Wang Y; Chen W; Lyu Y; Dungan B; Carroll KC; Holguin FO
    Water Res; 2019 Jan; 148():41-50. PubMed ID: 30343197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption of PFOA at the Air-Water Interface during Transport in Unsaturated Porous Media.
    Lyu Y; Brusseau ML; Chen W; Yan N; Fu X; Lin X
    Environ Sci Technol; 2018 Jul; 52(14):7745-7753. PubMed ID: 29944343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of multiple-component PFAS solutions on fluid-fluid interfacial adsorption and transport of PFOS in unsaturated porous media.
    Huang D; Saleem H; Guo B; Brusseau ML
    Sci Total Environ; 2022 Feb; 806(Pt 2):150595. PubMed ID: 34592291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulating PFAS transport influenced by rate-limited multi-process retention.
    Brusseau ML
    Water Res; 2020 Jan; 168():115179. PubMed ID: 31639593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ideal versus Nonideal Transport of PFAS in Unsaturated Porous Media.
    Brusseau ML; Guo B; Huang D; Yan N; Lyu Y
    Water Res; 2021 Sep; 202():117405. PubMed ID: 34273774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of Nonaqueous-Phase Liquids to the Retention and Transport of Per and Polyfluoroalkyl Substances (PFAS) in Porous Media.
    Van Glubt S; Brusseau ML
    Environ Sci Technol; 2021 Mar; 55(6):3706-3715. PubMed ID: 33666425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of a Hydrocarbon Surfactant on the Retention and Transport of Perfluorooctanoic Acid in Saturated and Unsaturated Porous Media.
    Ji Y; Yan N; Brusseau ML; Guo B; Zheng X; Dai M; Liu H; Li X
    Environ Sci Technol; 2021 Aug; 55(15):10480-10490. PubMed ID: 34288652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retention of PFOS and PFOA Mixtures by Trapped Gas Bubbles in Porous Media.
    Abraham JEF; Mumford KG; Patch DJ; Weber KP
    Environ Sci Technol; 2022 Nov; 56(22):15489-15498. PubMed ID: 36279175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the potential contributions of additional retention processes to PFAS retardation in the subsurface.
    Brusseau ML
    Sci Total Environ; 2018 Feb; 613-614():176-185. PubMed ID: 28915454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Air-water interfacial areas relevant for transport of per and poly-fluoroalkyl substances.
    Brusseau ML; Guo B
    Water Res; 2021 Dec; 207():117785. PubMed ID: 34731664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determining air-water interfacial areas for the retention and transport of PFAS and other interfacially active solutes in unsaturated porous media.
    Brusseau ML
    Sci Total Environ; 2023 Aug; 884():163730. PubMed ID: 37120024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of molecular structure on the adsorption of PFAS to fluid-fluid interfaces: Using QSPR to predict interfacial adsorption coefficients.
    Brusseau ML
    Water Res; 2019 Apr; 152():148-158. PubMed ID: 30665161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential impact of bacteria on the transport of PFAS in porous media.
    Dai M; Yan N; Brusseau ML
    Water Res; 2023 Sep; 243():120350. PubMed ID: 37499541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Residual Nonaqueous-Phase Liquids (NAPLs) on the Transport and Retention of Perfluoroalkyl Substances.
    Liao S; Arshadi M; Woodcock MJ; Saleeba ZSSL; Pinchbeck D; Liu C; Cápiro NL; Abriola LM; Pennell KD
    Environ Sci Technol; 2022 Jun; 56(12):7976-7985. PubMed ID: 35675453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Air-water interfacial adsorption of C4-C10 perfluorocarboxylic acids during transport in unsaturated porous media.
    Lyu Y; Wang B; Du X; Guo B; Brusseau ML
    Sci Total Environ; 2022 Jul; 831():154905. PubMed ID: 35364184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PFAS transport under lower water-saturation conditions characterized with instrumented-column systems.
    Bigler M; He X; Brusseau ML
    Water Res; 2024 Jun; 260():121922. PubMed ID: 38878314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of solution chemistry on air-water interfacial adsorption and transport of PFOA in unsaturated porous media.
    Lyu Y; Brusseau ML
    Sci Total Environ; 2020 Apr; 713():136744. PubMed ID: 32019053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating the relative magnitudes of adsorption to solid-water and air/oil-water interfaces for per- and poly-fluoroalkyl substances.
    Brusseau ML
    Environ Pollut; 2019 Nov; 254(Pt B):113102. PubMed ID: 31491699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of methods to estimate air-water interfacial areas for evaluating PFAS transport in the vadose zone.
    Silva JAK; Šimůnek J; McCray JE
    J Contam Hydrol; 2022 May; 247():103984. PubMed ID: 35279485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport of GenX in Saturated and Unsaturated Porous Media.
    Yan N; Ji Y; Zhang B; Zheng X; Brusseau ML
    Environ Sci Technol; 2020 Oct; 54(19):11876-11885. PubMed ID: 32972138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.