BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 30343197)

  • 21. Importance of surface roughness on perfluorooctanoic acid (PFOA) transport in unsaturated porous media.
    Lyu X; Liu X; Sun Y; Gao B; Ji R; Wu J; Xue Y
    Environ Pollut; 2020 Nov; 266(Pt 1):115343. PubMed ID: 32814265
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Co-Transport of PFAS and Cr(VI) in porous media.
    Huang D; Khan NA; Wang G; Carroll KC; Brusseau ML
    Chemosphere; 2022 Jan; 286(Pt 3):131834. PubMed ID: 34392202
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The influence of NAPL distribution on the transport of PFOS in Co-contaminated media.
    Liu H; Guo Z; Zhu Y; Van Glubt S; Brusseau ML
    J Hazard Mater; 2024 Jan; 462():132794. PubMed ID: 37862902
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Importance of Al/Fe oxyhydroxide coating and ionic strength in perfluorooctanoic acid (PFOA) transport in saturated porous media.
    Lyu X; Liu X; Wu X; Sun Y; Gao B; Wu J
    Water Res; 2020 May; 175():115685. PubMed ID: 32172055
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Uptake of Poly- and Perfluoroalkyl Substances at the Air-Water Interface.
    Schaefer CE; Culina V; Nguyen D; Field J
    Environ Sci Technol; 2019 Nov; 53(21):12442-12448. PubMed ID: 31577432
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Mathematical Model for the Release, Transport, and Retention of Per- and Polyfluoroalkyl Substances (PFAS) in the Vadose Zone.
    Guo B; Zeng J; Brusseau ML
    Water Resour Res; 2020 Feb; 56(2):. PubMed ID: 33223573
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PFAS concentrations in soil versus soil porewater: Mass distributions and the impact of adsorption at air-water interfaces.
    Brusseau ML; Guo B
    Chemosphere; 2022 Sep; 302():134938. PubMed ID: 35568214
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Leaching and transport of PFAS from aqueous film-forming foam (AFFF) in the unsaturated soil at a firefighting training facility under cold climatic conditions.
    Høisæter Å; Pfaff A; Breedveld GD
    J Contam Hydrol; 2019 Apr; 222():112-122. PubMed ID: 30878240
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Physicochemical factors controlling the retention and transport of perfluorooctanoic acid (PFOA) in saturated sand and limestone porous media.
    Lv X; Sun Y; Ji R; Gao B; Wu J; Lu Q; Jiang H
    Water Res; 2018 Sep; 141():251-258. PubMed ID: 29800833
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluating air-water and NAPL-water interfacial adsorption and retention of Perfluorocarboxylic acids within the Vadose zone.
    Silva JAK; Martin WA; Johnson JL; McCray JE
    J Contam Hydrol; 2019 Jun; 223():103472. PubMed ID: 30979513
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The influence of surfactant and solution composition on PFAS adsorption at fluid-fluid interfaces.
    Brusseau ML; Van Glubt S
    Water Res; 2019 Sep; 161():17-26. PubMed ID: 31174056
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Examining the robustness and concentration dependency of PFAS air-water and NAPL-water interfacial adsorption coefficients.
    Brusseau ML
    Water Res; 2021 Feb; 190():116778. PubMed ID: 33387950
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transport behaviors of plastic particles in saturated quartz sand without and with biochar/Fe
    Tong M; He L; Rong H; Li M; Kim H
    Water Res; 2020 Feb; 169():115284. PubMed ID: 31739235
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gaseous transport of volatile organic chemicals in unsaturated porous media: effect of water-partitioning and air-water interfacial adsorption.
    Kim H; Annable MD; Rao PS
    Environ Sci Technol; 2001 Nov; 35(22):4457-62. PubMed ID: 11757601
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The influence of molecular structure on PFAS adsorption at air-water interfaces in electrolyte solutions.
    Brusseau ML; Van Glubt S
    Chemosphere; 2021 Oct; 281():130829. PubMed ID: 33992851
    [TBL] [Abstract][Full Text] [Related]  

  • 36. QSPR-based prediction of air-water interfacial adsorption coefficients for nonionic PFAS with large headgroups.
    Brusseau ML
    Chemosphere; 2023 Nov; 340():139960. PubMed ID: 37633613
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distribution of colloid particles onto interfaces in partially saturated sand.
    Zevi Y; Dathe A; McCarthy JF; Richards BK; Steenhuis TS
    Environ Sci Technol; 2005 Sep; 39(18):7055-64. PubMed ID: 16201629
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transport of citrate-coated silver nanoparticles in unsaturated sand.
    Kumahor SK; Hron P; Metreveli G; Schaumann GE; Vogel HJ
    Sci Total Environ; 2015 Dec; 535():113-21. PubMed ID: 25827720
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nonideal Transport and Extended Elution Tailing of PFOS in Soil.
    Brusseau ML; Khan N; Wang Y; Yan N; Van Glubt S; Carroll KC
    Environ Sci Technol; 2019 Sep; 53(18):10654-10664. PubMed ID: 31464435
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predicting Interfacial Tension and Adsorption at Fluid-Fluid Interfaces for Mixtures of PFAS and/or Hydrocarbon Surfactants.
    Guo B; Saleem H; Brusseau ML
    Environ Sci Technol; 2023 May; 57(21):8044-8052. PubMed ID: 37204869
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.