These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 30343198)

  • 1. Evaluating a multi-panel air cathode through electrochemical and biotic tests.
    Rossi R; Jones D; Myung J; Zikmund E; Yang W; Gallego YA; Pant D; Evans PJ; Page MA; Cropek DM; Logan BE
    Water Res; 2019 Jan; 148():51-59. PubMed ID: 30343198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pilot scale microbial fuel cells using air cathodes for producing electricity while treating wastewater.
    Rossi R; Hur AY; Page MA; Thomas AO; Butkiewicz JJ; Jones DW; Baek G; Saikaly PE; Cropek DM; Logan BE
    Water Res; 2022 May; 215():118208. PubMed ID: 35255425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells.
    Logan B; Cheng S; Watson V; Estadt G
    Environ Sci Technol; 2007 May; 41(9):3341-6. PubMed ID: 17539547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrode Modification and Optimization in Air-Cathode Single-Chamber Microbial Fuel Cells.
    Wang Y; Wu J; Yang S; Li H; Li X
    Int J Environ Res Public Health; 2018 Jun; 15(7):. PubMed ID: 29954125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tubular membrane cathodes for scalable power generation in microbial fuel cells.
    Zuo Y; Cheng S; Call D; Logan BE
    Environ Sci Technol; 2007 May; 41(9):3347-53. PubMed ID: 17539548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion exchange membrane cathodes for scalable microbial fuel cells.
    Zuo Y; Cheng S; Logan BE
    Environ Sci Technol; 2008 Sep; 42(18):6967-72. PubMed ID: 18853817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of electrode configurations on retention time and domestic wastewater treatment efficiency using microbial fuel cells.
    Kim KY; Yang W; Logan BE
    Water Res; 2015 Sep; 80():41-6. PubMed ID: 25996751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane.
    Liu H; Logan BE
    Environ Sci Technol; 2004 Jul; 38(14):4040-6. PubMed ID: 15298217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cathode performance as a factor in electricity generation in microbial fuel cells.
    Oh S; Min B; Logan BE
    Environ Sci Technol; 2004 Sep; 38(18):4900-4. PubMed ID: 15487802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High efficiency electrochemical separation of uranium(VI) from uranium-containing wastewater by microbial fuel cells with different cathodes.
    Sun D; Lv C; Hua Y; Li M; Zhang X; Fang Q; Cai T; Wu X
    Bioelectrochemistry; 2023 Jun; 151():108393. PubMed ID: 36739701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual role of macrophytes in constructed wetland-microbial fuel cells using pyrrhotite as cathode material: A comparative assessment.
    Yang Y; Zhao Y; Tang C; Liu R; Chen T
    Chemosphere; 2021 Jan; 263():128354. PubMed ID: 33297276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electricity generation by microbial fuel cell using microorganisms as catalyst in cathode.
    Jang JK; Kan J; Bretschger O; Gorby YA; Hsu L; Kim BH; Nealson KH
    J Microbiol Biotechnol; 2013 Dec; 23(12):1765-73. PubMed ID: 24225369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel trickling microbial fuel cells for electricity generation from wastewater.
    Gao N; Fan Y; Long F; Qiu Y; Geier W; Liu H
    Chemosphere; 2020 Jun; 248():126058. PubMed ID: 32045974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrode and azo dye decolorization performance in microbial-fuel-cell-coupled constructed wetlands with different electrode size during long-term wastewater treatment.
    Fang Z; Cao X; Li X; Wang H; Li X
    Bioresour Technol; 2017 Aug; 238():450-460. PubMed ID: 28463809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced activated carbon cathode performance for microbial fuel cell by blending carbon black.
    Zhang X; Xia X; Ivanov I; Huang X; Logan BE
    Environ Sci Technol; 2014; 48(3):2075-81. PubMed ID: 24422458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of cathodic electron acceptor on microbial fuel cell internal resistance.
    Lawson K; Rossi R; Regan JM; Logan BE
    Bioresour Technol; 2020 Nov; 316():123919. PubMed ID: 32771939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of reactor configuration on pilot-scale microbial fuel cell performance.
    Rossi R; Logan BE
    Water Res; 2022 Oct; 225():119179. PubMed ID: 36206685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tungsten oxide as electrocatalyst for improved power generation and wastewater treatment in microbial fuel cell.
    Das S; Ghangrekar MM
    Environ Technol; 2020 Aug; 41(19):2546-2553. PubMed ID: 30681908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insight into the performance discrepancy of GAC and CAC as air-cathode materials in constructed wetland-microbial fuel cell system.
    Ji B; Zhao Y; Yang Y; Tang C; Dai Y; Zhang X; Tai Y; Tao R; Ruan W
    Sci Total Environ; 2022 Feb; 808():152078. PubMed ID: 34863746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Domestic wastewater treatment using multi-electrode continuous flow MFCs with a separator electrode assembly design.
    Ahn Y; Logan BE
    Appl Microbiol Biotechnol; 2013 Jan; 97(1):409-16. PubMed ID: 23053104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.