These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 30343288)

  • 1. Effect of Physical and Chemical Hair Removal Methods on Skin Barrier Function in vitro: Consequences for a Hydrophilic Model Permeant.
    Pany A; Klang V; Brunner M; Ruthofer J; Schwarz E; Valenta C
    Skin Pharmacol Physiol; 2019; 32(1):8-21. PubMed ID: 30343288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hair removal and bioavailability of chemicals: Effect of physicochemical properties of drugs and surfactants on skin permeation ex vivo.
    Pany A; Klang V; Peinhopf C; Zecevic A; Ruthofer J; Valenta C
    Int J Pharm; 2019 Aug; 567():118477. PubMed ID: 31255775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Skin integrity testing and monitoring of in vitro tape stripping by capacitance-based sensor imaging.
    Klang V; Schwarz JC; Haberfeld S; Xiao P; Wirth M; Valenta C
    Skin Res Technol; 2013 Feb; 19(1):e259-72. PubMed ID: 22672064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characteristic differences in barrier and hygroscopic properties between normal and cosmetic dry skin. I. Enhanced barrier analysis with sequential tape-stripping.
    Lu N; Chandar P; Tempesta D; Vincent C; Bajor J; McGuiness H
    Int J Cosmet Sci; 2014 Apr; 36(2):167-74. PubMed ID: 24397786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alteration of skin hydration and its barrier function by vehicle and permeation enhancers: a study using TGA, FTIR, TEWL and drug permeation as markers.
    Shah DK; Khandavilli S; Panchagnula R
    Methods Find Exp Clin Pharmacol; 2008 Sep; 30(7):499-512. PubMed ID: 18985178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hair Removal Practices: A Literature Review.
    Kang CN; Shah M; Lynde C; Fleming P
    Skin Therapy Lett; 2021 Sep; 26(5):6-11. PubMed ID: 34524781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an in vitro model for premature neonatal skin: biophysical characterization using transepidermal water loss.
    Sekkat N; Kalia YN; Guy RH
    J Pharm Sci; 2004 Dec; 93(12):2936-40. PubMed ID: 15459948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization and validation of an in vivo confocal Raman spectroscopy led tri-method approach in the evaluation of the lip barrier.
    Bielfeldt S; Laing S; Sadowski T; Gunt H; Wilhelm KP
    Skin Res Technol; 2020 May; 26(3):390-397. PubMed ID: 31820504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Penetration monitoring of drugs and additives by ATR-FTIR spectroscopy/tape stripping and confocal Raman spectroscopy - A comparative study.
    Binder L; Kulovits EM; Petz R; Ruthofer J; Baurecht D; Klang V; Valenta C
    Eur J Pharm Biopharm; 2018 Sep; 130():214-223. PubMed ID: 29981829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The correlation between transepidermal water loss and percutaneous absorption: an overview.
    Levin J; Maibach H
    J Control Release; 2005 Mar; 103(2):291-9. PubMed ID: 15763614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shaving effects on percutaneous penetration: clinical implications.
    Hamza M; Tohid H; Maibach H
    Cutan Ocul Toxicol; 2015; 34(4):335-43. PubMed ID: 25363065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NLC versus nanoemulsions: Effect on physiological skin parameters during regular in vivo application and impact on drug penetration.
    Wolf M; Klang V; Stojcic T; Fuchs C; Wolzt M; Valenta C
    Int J Pharm; 2018 Oct; 549(1-2):343-351. PubMed ID: 30099212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The relationship between transepidermal water loss and skin permeability.
    Machado M; Salgado TM; Hadgraft J; Lane ME
    Int J Pharm; 2010 Jan; 384(1-2):73-7. PubMed ID: 19799976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Location-related differences in structure and function of the stratum corneum with special emphasis on those of the facial skin.
    Tagami H
    Int J Cosmet Sci; 2008 Dec; 30(6):413-34. PubMed ID: 19099543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of the synergic effects of calcium chloride and electroporation on the in vitro enhanced skin permeation of drugs.
    Tokudome Y; Sugibayashi K
    J Control Release; 2004 Mar; 95(2):267-74. PubMed ID: 14980775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical measurement of the hydration state of the skin surface in vivo.
    Tagami H
    Br J Dermatol; 2014 Sep; 171 Suppl 3():29-33. PubMed ID: 25234175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of absorption and spreading of moisturizer on the microscopic region of the skin surface with near-infrared imaging.
    Arimoto H; Yanai M; Egawa M
    Skin Res Technol; 2016 Nov; 22(4):505-512. PubMed ID: 27334342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stratum corneum integrity as a predictor for peristomal skin problems in ostomates.
    Nybaek H; Lophagen S; Karlsmark T; Bang Knudsen D; Jemec GB
    Br J Dermatol; 2010 Feb; 162(2):357-61. PubMed ID: 19811497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissolvable microneedles in the skin: Determination the impact of barrier disruption and dry skin on dissolution.
    Limcharoen B; Wanichwecharungruang S; Kröger M; Sansureerungsikul T; Schleusener J; Lena Klein A; Banlunara W; Meinke MC; Darvin ME
    Eur J Pharm Biopharm; 2024 Jun; 199():114303. PubMed ID: 38657740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of continuous electrical capacitance and transepidermal water loss measurements for assessing barrier function in neonatal rat skin.
    Wickett RR; Nath V; Tanaka R; Hoath SB
    Skin Pharmacol; 1995; 8(4):179-85. PubMed ID: 7488394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.