BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 30343386)

  • 1. The Sorghum QTL Atlas: a powerful tool for trait dissection, comparative genomics and crop improvement.
    Mace E; Innes D; Hunt C; Wang X; Tao Y; Baxter J; Hassall M; Hathorn A; Jordan D
    Theor Appl Genet; 2019 Mar; 132(3):751-766. PubMed ID: 30343386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative Genetics of Seed Size Traits in Divergent Cereal Lineages Represented by Sorghum (Panicoidae) and Rice (Oryzoidae).
    Zhang D; Li J; Compton RO; Robertson J; Goff VH; Epps E; Kong W; Kim C; Paterson AH
    G3 (Bethesda); 2015 Mar; 5(6):1117-28. PubMed ID: 25834216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating sorghum whole genome sequence information with a compendium of sorghum QTL studies reveals uneven distribution of QTL and of gene-rich regions with significant implications for crop improvement.
    Mace ES; Jordan DR
    Theor Appl Genet; 2011 Jun; 123(1):169-91. PubMed ID: 21484332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping QTL for grain yield and other agronomic traits in post-rainy sorghum [Sorghum bicolor (L.) Moench].
    Nagaraja Reddy R; Madhusudhana R; Murali Mohan S; Chakravarthi DV; Mehtre SP; Seetharama N; Patil JV
    Theor Appl Genet; 2013 Aug; 126(8):1921-39. PubMed ID: 23649648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic architecture of kernel composition in global sorghum germplasm.
    Rhodes DH; Hoffmann L; Rooney WL; Herald TJ; Bean S; Boyles R; Brenton ZW; Kresovich S
    BMC Genomics; 2017 Jan; 18(1):15. PubMed ID: 28056770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic Architecture of domestication- and improvement-related traits using a population derived from Sorghum virgatum and Sorghum bicolor.
    Liu H; Liu H; Zhou L; Lin Z
    Plant Sci; 2019 Jun; 283():135-146. PubMed ID: 31128683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gramene database: a hub for comparative plant genomics.
    Jaiswal P
    Methods Mol Biol; 2011; 678():247-75. PubMed ID: 20931385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of genic-microsatellite markers for sorghum staygreen QTL using a comparative genomic approach with rice.
    Srinivas G; Satish K; Murali Mohan S; Nagaraja Reddy R; Madhusudhana R; Balakrishna D; Venkatesh Bhat B; Howarth CJ; Seetharama N
    Theor Appl Genet; 2008 Jul; 117(2):283-96. PubMed ID: 18438637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of quantitative trait loci for agronomically important traits and their association with genic-microsatellite markers in sorghum.
    Srinivas G; Satish K; Madhusudhana R; Reddy RN; Mohan SM; Seetharama N
    Theor Appl Genet; 2009 May; 118(8):1439-54. PubMed ID: 19274449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fine mapping of qGW1, a major QTL for grain weight in sorghum.
    Han L; Chen J; Mace ES; Liu Y; Zhu M; Yuyama N; Jordan DR; Cai H
    Theor Appl Genet; 2015 Sep; 128(9):1813-25. PubMed ID: 26071275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two distinct classes of QTL determine rust resistance in sorghum.
    Wang X; Mace E; Hunt C; Cruickshank A; Henzell R; Parkes H; Jordan D
    BMC Plant Biol; 2014 Dec; 14():366. PubMed ID: 25551674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased Power To Dissect Adaptive Traits in Global Sorghum Diversity Using a Nested Association Mapping Population.
    Bouchet S; Olatoye MO; Marla SR; Perumal R; Tesso T; Yu J; Tuinstra M; Morris GP
    Genetics; 2017 Jun; 206(2):573-585. PubMed ID: 28592497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-scale GWAS in sorghum reveals common genetic control of grain size among cereals.
    Tao Y; Zhao X; Wang X; Hathorn A; Hunt C; Cruickshank AW; van Oosterom EJ; Godwin ID; Mace ES; Jordan DR
    Plant Biotechnol J; 2020 Apr; 18(4):1093-1105. PubMed ID: 31659829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manipulating assimilate availability provides insight into the genes controlling grain size in sorghum.
    Tao Y; Trusov Y; Zhao X; Wang X; Cruickshank AW; Hunt C; van Oosterom EJ; Hathorn A; Liu G; Godwin ID; Botella JR; Mace ES; Jordan DR
    Plant J; 2021 Oct; 108(1):231-243. PubMed ID: 34309934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-Wide Association Study for Major Biofuel Traits in Sorghum Using Minicore Collection.
    Rayaprolu L; Selvanayagam S; Rao DM; Gupta R; Das RR; Rathore A; Gandham P; Kiranmayee KNSU; Deshpande SP; Are AK
    Protein Pept Lett; 2021; 28(8):909-928. PubMed ID: 33588716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QTL analysis of ergot resistance in sorghum.
    Parh DK; Jordan DR; Aitken EA; Mace ES; Jun-ai P; McIntyre CL; Godwin ID
    Theor Appl Genet; 2008 Aug; 117(3):369-82. PubMed ID: 18481043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inheritance of inflorescence architecture in sorghum.
    Brown PJ; Klein PE; Bortiri E; Acharya CB; Rooney WL; Kresovich S
    Theor Appl Genet; 2006 Sep; 113(5):931-42. PubMed ID: 16847662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissecting Adaptive Traits with Nested Association Mapping: Genetic Architecture of Inflorescence Morphology in Sorghum.
    Olatoye MO; Marla SR; Hu Z; Bouchet S; Perumal R; Morris GP
    G3 (Bethesda); 2020 May; 10(5):1785-1796. PubMed ID: 32217633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supermodels: sorghum and maize provide mutual insight into the genetics of flowering time.
    Mace ES; Hunt CH; Jordan DR
    Theor Appl Genet; 2013 May; 126(5):1377-95. PubMed ID: 23459955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput phenotyping for crop improvement in the genomics era.
    Mir RR; Reynolds M; Pinto F; Khan MA; Bhat MA
    Plant Sci; 2019 May; 282():60-72. PubMed ID: 31003612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.