These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Contribution of autofluorescence from intracellular proteins in multiphoton fluorescence lifetime imaging. Malak M; James J; Grantham J; Ericson MB Sci Rep; 2022 Oct; 12(1):16584. PubMed ID: 36198710 [TBL] [Abstract][Full Text] [Related]
23. Light-sheet autofluorescence lifetime imaging with a single-photon avalanche diode array. Samimi K; Desa DE; Lin W; Weiss K; Li J; Huisken J; Miskolci V; Huttenlocher A; Chacko JV; Velten A; Rogers JD; Eliceiri KW; Skala MC J Biomed Opt; 2023 Jun; 28(6):066502. PubMed ID: 37351197 [TBL] [Abstract][Full Text] [Related]
24. Systematic Enzyme Mapping of Cellular Metabolism by Phasor-Analyzed Label-Free NAD(P)H Fluorescence Lifetime Imaging. Leben R; Köhler M; Radbruch H; Hauser AE; Niesner RA Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31703416 [TBL] [Abstract][Full Text] [Related]
25. Label-free characterization of single extracellular vesicles using two-photon fluorescence lifetime imaging microscopy of NAD(P)H. Sorrells JE; Martin EM; Aksamitiene E; Mukherjee P; Alex A; Chaney EJ; Marjanovic M; Boppart SA Sci Rep; 2021 Feb; 11(1):3308. PubMed ID: 33558561 [TBL] [Abstract][Full Text] [Related]
26. Faster, sharper, more precise: Automated Cluster-FLIM in preclinical testing directly identifies the intracellular fate of theranostics in live cells and tissue. Brodwolf R; Volz-Rakebrand P; Stellmacher J; Wolff C; Unbehauen M; Haag R; Schäfer-Korting M; Zoschke C; Alexiev U Theranostics; 2020; 10(14):6322-6336. PubMed ID: 32483455 [TBL] [Abstract][Full Text] [Related]
27. Metabolic imaging with the use of fluorescence lifetime imaging microscopy (FLIM) accurately detects mitochondrial dysfunction in mouse oocytes. Sanchez T; Wang T; Pedro MV; Zhang M; Esencan E; Sakkas D; Needleman D; Seli E Fertil Steril; 2018 Dec; 110(7):1387-1397. PubMed ID: 30446247 [TBL] [Abstract][Full Text] [Related]
28. Metabolic mapping of glioblastoma stem cells reveals NADH fluxes associated with glioblastoma phenotype and survival. Schroeder A; Pointer K; Clark P; Datta R; Kuo J; Eliceiri K J Biomed Opt; 2020 Mar; 25(3):1-13. PubMed ID: 32216192 [TBL] [Abstract][Full Text] [Related]
29. Autofluorescence imaging captures heterogeneous drug response differences between 2D and 3D breast cancer cultures. Cannon TM; Shah AT; Skala MC Biomed Opt Express; 2017 Mar; 8(3):1911-1925. PubMed ID: 28663873 [TBL] [Abstract][Full Text] [Related]
30. Live cell imaging of cytosolic NADH/NAD Masia R; McCarty WJ; Lahmann C; Luther J; Chung RT; Yarmush ML; Yellen G Am J Physiol Gastrointest Liver Physiol; 2018 Jan; 314(1):G97-G108. PubMed ID: 29025729 [TBL] [Abstract][Full Text] [Related]
31. Insights into Metabolic Activity and Structure of the Retina through Multiphoton Fluorescence Lifetime Imaging Microscopy in Mice. Kesavamoorthy N; Junge JA; Fraser SE; Ameri H Cells; 2022 Jul; 11(15):. PubMed ID: 35892562 [TBL] [Abstract][Full Text] [Related]
32. Two-Photon Microscopy (TPM) and Fluorescence Lifetime Imaging Microscopy (FLIM) of Retinal Pigment Epithelium (RPE) of Mice In Vivo. Miura Y Methods Mol Biol; 2018; 1753():73-88. PubMed ID: 29564782 [TBL] [Abstract][Full Text] [Related]
33. Multiphoton microscopy and fluorescence lifetime imaging microscopy (FLIM) to monitor metastasis and the tumor microenvironment. Provenzano PP; Eliceiri KW; Keely PJ Clin Exp Metastasis; 2009; 26(4):357-70. PubMed ID: 18766302 [TBL] [Abstract][Full Text] [Related]
34. Evaluating Cell Metabolism Through Autofluorescence Imaging of NAD(P)H and FAD. Kolenc OI; Quinn KP Antioxid Redox Signal; 2019 Feb; 30(6):875-889. PubMed ID: 29268621 [TBL] [Abstract][Full Text] [Related]
35. Multiphoton fluorescence lifetime imaging of intrinsic fluorescence in human and rat brain tissue reveals spatially distinct NADH binding. Chia TH; Williamson A; Spencer DD; Levene MJ Opt Express; 2008 Mar; 16(6):4237-49. PubMed ID: 18542519 [TBL] [Abstract][Full Text] [Related]
36. In vivo metabolic and SHG imaging for monitoring of tumor response to chemotherapy. Lukina MM; Dudenkova VV; Shimolina LE; Snopova LB; Zagaynova EV; Shirmanova MV Cytometry A; 2019 Jan; 95(1):47-55. PubMed ID: 30329217 [TBL] [Abstract][Full Text] [Related]
37. Analysis of the metabolic deterioration of ex vivo skin from ischemic necrosis through the imaging of intracellular NAD(P)H by multiphoton tomography and fluorescence lifetime imaging microscopy. Sanchez WY; Prow TW; Sanchez WH; Grice JE; Roberts MS J Biomed Opt; 2010; 15(4):046008. PubMed ID: 20799810 [TBL] [Abstract][Full Text] [Related]
38. Noniterative biexponential fluorescence lifetime imaging in the investigation of cellular metabolism by means of NAD(P)H autofluorescence. Niesner R; Peker B; Schlüsche P; Gericke KH Chemphyschem; 2004 Aug; 5(8):1141-9. PubMed ID: 15446736 [TBL] [Abstract][Full Text] [Related]
39. Optical changes in THP-1 macrophage metabolism in response to pro- and anti-inflammatory stimuli reported by label-free two-photon imaging. Smokelin I; Mizzoni C; Erndt-Marino J; Kaplan D; Georgakoudi I J Biomed Opt; 2020 Jan; 25(1):1-14. PubMed ID: 31953928 [TBL] [Abstract][Full Text] [Related]
40. Estimation of the Mitochondrial Membrane Potential Using Fluorescence Lifetime Imaging Microscopy. Okkelman IA; Papkovsky DB; Dmitriev RI Cytometry A; 2020 May; 97(5):471-482. PubMed ID: 31486581 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]