BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 30343571)

  • 1. Bioinspired Pseudozwitterionic Hydrogels with Bioactive Enzyme Immobilization via pH-Responsive Regulation.
    Chou C; Syu S; Chang JH; Aimar P; Chang Y
    Langmuir; 2019 Feb; 35(5):1909-1918. PubMed ID: 30343571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anti-biofouling and functionalizable bioinspired chitosan-based hydrogel coating via surface photo-immobilization.
    Xv J; Li H; Zhang W; Lai G; Xue H; Zhao J; Tu M; Zeng R
    J Biomater Sci Polym Ed; 2019 Apr; 30(5):398-414. PubMed ID: 30688155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zwitterionic polymer brushes via dopamine-initiated ATRP from PET sheets for improving hemocompatible and antifouling properties.
    Jin X; Yuan J; Shen J
    Colloids Surf B Biointerfaces; 2016 Sep; 145():275-284. PubMed ID: 27208441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface charge-bias impact of amine-contained pseudozwitterionic biointerfaces on the human blood compatibility.
    Venault A; Hsu KJ; Yeh LC; Chinnathambi A; Ho HT; Chang Y
    Colloids Surf B Biointerfaces; 2017 Mar; 151():372-383. PubMed ID: 28063289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface charge control for zwitterionic polymer brushes: Tailoring surface properties to antifouling applications.
    Guo S; Jańczewski D; Zhu X; Quintana R; He T; Neoh KG
    J Colloid Interface Sci; 2015 Aug; 452():43-53. PubMed ID: 25913777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Library of Antifouling Surfaces Derived From Natural Amino Acids by Click Reaction.
    Xu C; Hu X; Wang J; Zhang YM; Liu XJ; Xie BB; Yao C; Li Y; Li XS
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17337-45. PubMed ID: 26191785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hemocompatibility of pseudozwitterionic polymer brushes with a systematic well-defined charge-bias control.
    Jhong JF; Sin MC; Kung HH; Chinnathambi A; Alharbi SA; Chang Y
    J Biomater Sci Polym Ed; 2014; 25(14-15):1558-72. PubMed ID: 24894872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antifouling silicone hydrogel contact lenses via densely grafted phosphorylcholine polymers.
    Spadafora A; Korogiannaki M; Sheardown H
    Biointerphases; 2020 Aug; 15(4):041013. PubMed ID: 32867505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein diffusion characteristics in the hydrogels of poly(ethylene glycol) and zwitterionic poly(sulfobetaine methacrylate) (pSBMA).
    Wu J; Xiao Z; He C; Zhu J; Ma G; Wang G; Zhang H; Xiao J; Chen S
    Acta Biomater; 2016 Aug; 40():172-181. PubMed ID: 27142255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipase release through semi-interpenetrating polymer network hydrogels based on chitosan, acrylamide, and citraconic acid.
    Pulat M; Akalın GO; Karahan ND
    Artif Cells Nanomed Biotechnol; 2014 Apr; 42(2):121-7. PubMed ID: 24621077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of network charge on the immobilization and release of proteins from chemically crosslinked dextran hydrogels.
    Schillemans JP; Hennink WE; van Nostrum CF
    Eur J Pharm Biopharm; 2010 Nov; 76(3):329-35. PubMed ID: 20708077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemocompatibility and anti-biofouling property improvement of poly(ethylene terephthalate) via self-polymerization of dopamine and covalent graft of lysine.
    Zhi X; Li P; Gan X; Zhang W; Shen T; Yuan J; Shen J
    J Biomater Sci Polym Ed; 2014; 25(14-15):1619-28. PubMed ID: 25075613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimuli-responsive and hemocompatible pseudozwitterionic interfaces.
    Venault A; Zheng YS; Chinnathambi A; Alharbi SA; Ho HT; Chang Y; Chang Y
    Langmuir; 2015 Mar; 31(9):2861-9. PubMed ID: 25680392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of Novel Sulfobetaine Polymers with Differing Dipole Orientations in Their Side Chains, and Their Effects on the Antifouling Properties.
    Schönemann E; Koc J; Aldred N; Clare AS; Laschewsky A; Rosenhahn A; Wischerhoff E
    Macromol Rapid Commun; 2020 Jan; 41(1):e1900447. PubMed ID: 31747088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New antifouling silica hydrogel.
    Beltrán-Osuna ÁA; Cao B; Cheng G; Jana SC; Espe MP; Lama B
    Langmuir; 2012 Jun; 28(25):9700-6. PubMed ID: 22607091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH- and Temperature-Responsive P(DMAEMA-GMA)-Alginate Semi-IPN Hydrogels Formed by Radical and Ring-Opening Polymerization for Aminophylline Release.
    Gao C; Liu M; Chen J; Chen C
    J Biomater Sci Polym Ed; 2012; 23(8):1039-54. PubMed ID: 21513583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid Mussel-Inspired Surface Zwitteration for Enhanced Antifouling and Antibacterial Properties.
    Asha AB; Chen Y; Zhang H; Ghaemi S; Ishihara K; Liu Y; Narain R
    Langmuir; 2019 Feb; 35(5):1621-1630. PubMed ID: 30558423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multifunctional polyampholyte hydrogels with fouling resistance and protein conjugation capacity.
    Schroeder ME; Zurick KM; McGrath DE; Bernards MT
    Biomacromolecules; 2013 Sep; 14(9):3112-22. PubMed ID: 23947943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering the polymer backbone to strengthen nonfouling sulfobetaine hydrogels.
    Carr L; Cheng G; Xue H; Jiang S
    Langmuir; 2010 Sep; 26(18):14793-8. PubMed ID: 20731337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mussel-Inspired Surface Functionalization of PET with Zwitterions and Silver Nanoparticles for the Dual-Enhanced Antifouling and Antibacterial Properties.
    Xin X; Li P; Zhu Y; Shi L; Yuan J; Shen J
    Langmuir; 2019 Feb; 35(5):1788-1797. PubMed ID: 30089363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.