BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 30343623)

  • 1. A Novel Multi-Dimensional Analysis of Rodent Gait Reveals the Compensation Strategies Used during Spontaneous Recovery from Spinal Cord and Traumatic Brain Injury.
    Neckel ND; Dai H; Burns MP
    J Neurotrauma; 2020 Feb; 37(3):517-527. PubMed ID: 30343623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated Gait Analysis to Assess Functional Recovery in Rodents with Peripheral Nerve or Spinal Cord Contusion Injury.
    Heinzel J; Swiadek N; Ashmwe M; Rührnößl A; Oberhauser V; Kolbenschlag J; Hercher D
    J Vis Exp; 2020 Oct; (164):. PubMed ID: 33104075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing forelimb function after unilateral cervical spinal cord injury: novel forelimb tasks predict lesion severity and recovery.
    Khaing ZZ; Geissler SA; Jiang S; Milman BD; Aguilar SV; Schmidt CE; Schallert T
    J Neurotrauma; 2012 Feb; 29(3):488-98. PubMed ID: 22022897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viscous field training induces after effects but hinders recovery of overground locomotion following spinal cord injury in rats.
    Neckel ND; Dai H
    Behav Brain Res; 2021 Aug; 412():113415. PubMed ID: 34153426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel spatiotemporal analysis of gait changes in body weight supported treadmill trained rats following cervical spinal cord injury.
    Neckel ND
    J Neuroeng Rehabil; 2017 Sep; 14(1):96. PubMed ID: 28903771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forelimb locomotor assessment scale (FLAS): novel assessment of forelimb dysfunction after cervical spinal cord injury.
    Anderson KD; Sharp KG; Hofstadter M; Irvine KA; Murray M; Steward O
    Exp Neurol; 2009 Nov; 220(1):23-33. PubMed ID: 19733168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The differential effects of cervical and thoracic dorsal funiculus lesions in rats.
    Kanagal SG; Muir GD
    Behav Brain Res; 2008 Mar; 187(2):379-86. PubMed ID: 18037173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robotic gait analysis of bipedal treadmill stepping by spinal contused rats: characterization of intrinsic recovery and comparison with BBB.
    Nessler JA; De Leon RD; Sharp K; Kwak E; Minakata K; Reinkensmeyer DJ
    J Neurotrauma; 2006 Jun; 23(6):882-96. PubMed ID: 16774473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compensatory locomotor adjustments of rats with cervical or thoracic spinal cord hemisections.
    Webb AA; Muir GD
    J Neurotrauma; 2002 Feb; 19(2):239-56. PubMed ID: 11893025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gait analysis at multiple speeds reveals differential functional and structural outcomes in response to graded spinal cord injury.
    Krizsan-Agbas D; Winter MK; Eggimann LS; Meriwether J; Berman NE; Smith PG; McCarson KE
    J Neurotrauma; 2014 May; 31(9):846-56. PubMed ID: 24405378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in forelimb-hindlimb coordination after partial spinal lesions of different extent in the rat.
    Górska T; Chojnicka-Gittins B; Majczyński H; Zmysłowski W
    Behav Brain Res; 2013 Feb; 239():121-38. PubMed ID: 23142611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The CatWalk XT® is a valid tool for objective assessment of motor function in the acute phase after controlled cortical impact in mice.
    Walter J; Kovalenko O; Younsi A; Grutza M; Unterberg A; Zweckberger K
    Behav Brain Res; 2020 Aug; 392():112680. PubMed ID: 32479852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bipedal locomotion of bonnet macaques after spinal cord injury.
    Babu RS; Anand P; Jeraud M; Periasamy P; Namasivayam A
    Motor Control; 2007 Oct; 11(4):322-47. PubMed ID: 18042964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic feet distance: A new functional assessment during treadmill locomotion in normal and thoracic spinal cord injured rats.
    Diogo CC; Costa LMD; Pereira JE; Filipe V; Couto PA; Magalhães LG; Geuna S; Armada-da-Silva PA; Maurício AC; Varejão AS
    Behav Brain Res; 2017 Sep; 335():132-135. PubMed ID: 28803852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying changes following spinal cord injury with velocity dependent locomotor measures.
    Neckel ND; Dai H; Bregman BS
    J Neurosci Methods; 2013 Mar; 214(1):27-36. PubMed ID: 23333791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensorimotor behaviour following incomplete cervical spinal cord injury in the rat.
    Webb AA; Muir GD
    Behav Brain Res; 2005 Dec; 165(2):147-59. PubMed ID: 16157393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Task-dependent compensation after pyramidal tract and dorsolateral spinal lesions in rats.
    Kanagal SG; Muir GD
    Exp Neurol; 2009 Mar; 216(1):193-206. PubMed ID: 19118552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Locomotor deficits and adaptive mechanisms after thoracic spinal cord contusion in the adult rat.
    Collazos-Castro JE; López-Dolado E; Nieto-Sampedro M
    J Neurotrauma; 2006 Jan; 23(1):1-17. PubMed ID: 16430369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Locomotor performance of the rat after neonatal repairing of spinal cord injuries: quantitative assessment and electromyographic study.
    Hase T; Kawaguchi S; Hayashi H; Nishio T; Asada Y; Nakamura T
    J Neurotrauma; 2002 Feb; 19(2):267-77. PubMed ID: 11893027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery of bipedal locomotion in bonnet macaques after spinal cord injury: footprint analysis.
    Babu RS; Namasivayam A
    Synapse; 2008 Jun; 62(6):432-47. PubMed ID: 18361440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.