These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 30343761)

  • 1. The economic value of imports of combustible waste in systems with high shares of district heating and variable renewable energy.
    Pizarro-Alonso A; Cimpan C; Ljunggren Söderman M; Ravn H; Münster M
    Waste Manag; 2018 Sep; 79():324-338. PubMed ID: 30343761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The climate footprint of imports of combustible waste in systems with high shares of district heating and variable renewable energy.
    Pizarro-Alonso A; Cimpan C; Münster M
    Waste Manag; 2018 Sep; 79():800-814. PubMed ID: 30029852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Driving forces for import of waste for energy recovery in Sweden.
    Olofsson M; Sahlin J; Ekvall T; Sundberg J
    Waste Manag Res; 2005 Feb; 23(1):3-12. PubMed ID: 15751390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy recovery from waste incineration: assessing the importance of district heating networks.
    Fruergaard T; Christensen TH; Astrup T
    Waste Manag; 2010 Jul; 30(7):1264-72. PubMed ID: 20385481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards a coherent European approach for taxation of combustible waste.
    Dubois M
    Waste Manag; 2013 Aug; 33(8):1776-83. PubMed ID: 23602303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental evaluation of the electric and cogenerative configurations for the energy recovery of the Turin municipal solid waste incineration plant.
    Panepinto D; Genon G
    Waste Manag Res; 2014 Jul; 32(7):670-80. PubMed ID: 24942837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The composition, heating value and renewable share of the energy content of mixed municipal solid waste in Finland.
    Horttanainen M; Teirasvuo N; Kapustina V; Hupponen M; Luoranen M
    Waste Manag; 2013 Dec; 33(12):2680-6. PubMed ID: 24047676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The status of waste management and waste to energy for district heating in South Korea.
    Thanos Bourtsalas AC; Seo Y; Tanvir Alam M; Seo YC
    Waste Manag; 2019 Feb; 85():304-316. PubMed ID: 30803585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feasibility analysis of municipal solid waste mass burning in the Region of East Macedonia--Thrace in Greece.
    Athanasiou CJ; Tsalkidis DA; Kalogirou E; Voudrias EA
    Waste Manag Res; 2015 Jun; 33(6):561-9. PubMed ID: 26060234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat supply from municipal solid waste incineration plants in Japan: Current situation and future challenges.
    Tabata T; Tsai P
    Waste Manag Res; 2016 Feb; 34(2):148-55. PubMed ID: 26628053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Municipal solid waste incineration plant: A multi-step approach to the evaluation of an energy-recovery configuration.
    Panepinto D; Zanetti MC
    Waste Manag; 2018 Mar; 73():332-341. PubMed ID: 28774585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term affected energy production of waste to energy technologies identified by use of energy system analysis.
    Münster M; Meibom P
    Waste Manag; 2010 Dec; 30(12):2510-9. PubMed ID: 20471819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple system modelling of waste management.
    Eriksson O; Bisaillon M
    Waste Manag; 2011 Dec; 31(12):2620-30. PubMed ID: 21855313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the organic waste management systems in the Danish-German border region using life cycle assessment (LCA).
    Jensen MB; Møller J; Scheutz C
    Waste Manag; 2016 Mar; 49():491-504. PubMed ID: 26856446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electricity generation: options for reduction in carbon emissions.
    Whittington HW
    Philos Trans A Math Phys Eng Sci; 2002 Aug; 360(1797):1653-68. PubMed ID: 12460490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of commercial and industrial waste in energy recovery systems - A UK preliminary study.
    Lupa CJ; Ricketts LJ; Sweetman A; Herbert BM
    Waste Manag; 2011 Aug; 31(8):1759-64. PubMed ID: 21530223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Life cycle assessment of waste incineration in Denmark and Italy using two LCA models.
    Turconi R; Butera S; Boldrin A; Grosso M; Rigamonti L; Astrup T
    Waste Manag Res; 2011 Oct; 29(10 Suppl):78-90. PubMed ID: 21930527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of heat recovery for district heating on waste incineration health impact: a simulation study in Northern Italy.
    Cordioli M; Vincenzi S; De Leo GA
    Sci Total Environ; 2013 Feb; 444():369-80. PubMed ID: 23280295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Life cycle costing of waste management systems: overview, calculation principles and case studies.
    Martinez-Sanchez V; Kromann MA; Astrup TF
    Waste Manag; 2015 Feb; 36():343-55. PubMed ID: 25524749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated assessment of a new Waste-to-Energy facility in Central Greece in the context of regional perspectives.
    Perkoulidis G; Papageorgiou A; Karagiannidis A; Kalogirou S
    Waste Manag; 2010 Jul; 30(7):1395-406. PubMed ID: 20061131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.