These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 30343768)

  • 61. Study on the influence of surface potential on the nitrate adsorption capacity of metal modified biochar.
    Long L; Xue Y; Hu X; Zhu Y
    Environ Sci Pollut Res Int; 2019 Jan; 26(3):3065-3074. PubMed ID: 30506387
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Lead sorptive removal using magnetic and nonmagnetic fast pyrolysis energy cane biochars.
    Mohan D; Singh P; Sarswat A; Steele PH; Pittman CU
    J Colloid Interface Sci; 2015 Jun; 448():238-50. PubMed ID: 25744855
    [TBL] [Abstract][Full Text] [Related]  

  • 63. High effective adsorption of Pb(II) from solution by biochar derived from torrefaction of ammonium persulphate pretreated bamboo.
    Shen Y; Guo JZ; Bai LQ; Chen XQ; Li B
    Bioresour Technol; 2021 Mar; 323():124616. PubMed ID: 33387711
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Removal of copper ions from aqueous solution using low temperature biochar derived from the pyrolysis of municipal solid waste.
    Hoslett J; Ghazal H; Ahmad D; Jouhara H
    Sci Total Environ; 2019 Jul; 673():777-789. PubMed ID: 31003106
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Phenoxy herbicide removal from aqueous solutions using fast pyrolysis switchgrass biochar.
    Essandoh M; Wolgemuth D; Pittman CU; Mohan D; Mlsna T
    Chemosphere; 2017 May; 174():49-57. PubMed ID: 28160678
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Preparation and characterization of a novel graphene/biochar composite for aqueous phenanthrene and mercury removal.
    Tang J; Lv H; Gong Y; Huang Y
    Bioresour Technol; 2015 Nov; 196():355-63. PubMed ID: 26255599
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Optimization of atrazine and imidacloprid removal from water using biochars: Designing single or multi-staged batch adsorption systems.
    Mandal A; Singh N
    Int J Hyg Environ Health; 2017 May; 220(3):637-645. PubMed ID: 28433639
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent--bamboo charcoal.
    Wang FY; Wang H; Ma JW
    J Hazard Mater; 2010 May; 177(1-3):300-6. PubMed ID: 20036463
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Biochar as an adsorbent for inorganic nitrogen and phosphorus removal from water: a review.
    Yin Q; Zhang B; Wang R; Zhao Z
    Environ Sci Pollut Res Int; 2017 Dec; 24(34):26297-26309. PubMed ID: 29039039
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Computational and experimental assessment of pH and specific ions on the solute solvent interactions of clay-biochar composites towards tetracycline adsorption: Implications on wastewater treatment.
    Borthakur P; Aryafard M; Zara Z; David Ř; Minofar B; Das MR; Vithanage M
    J Environ Manage; 2021 Apr; 283():111989. PubMed ID: 33516097
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Synthesis and surfactant modification of clinoptilolite and montmorillonite for the removal of nitrate and preparation of slow release nitrogen fertilizer.
    Bhardwaj D; Sharma M; Sharma P; Tomar R
    J Hazard Mater; 2012 Aug; 227-228():292-300. PubMed ID: 22683109
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Bentonite and montmorillonite nanoparticles effectiveness in removal of fluoride from water solutions.
    Naghizadeh A; Gholami K
    J Water Health; 2017 Aug; 15(4):555-565. PubMed ID: 28771153
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Insights into aqueous carbofuran removal by modified and non-modified rice husk biochars.
    Mayakaduwa SS; Herath I; Ok YS; Mohan D; Vithanage M
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):22755-22763. PubMed ID: 27553000
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Low-cost magnetic herbal biochar: characterization and application for antibiotic removal.
    Kong X; Liu Y; Pi J; Li W; Liao Q; Shang J
    Environ Sci Pollut Res Int; 2017 Mar; 24(7):6679-6687. PubMed ID: 28083746
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Preparation of biochar from Enteromorpha prolifera and its use for the removal of polycyclic aromatic hydrocarbons (PAHs) from aqueous solution.
    Qiao K; Tian W; Bai J; Dong J; Zhao J; Gong X; Liu S
    Ecotoxicol Environ Saf; 2018 Mar; 149():80-87. PubMed ID: 29154138
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Synthesis and adsorption of FeMnLa-impregnated biochar composite as an adsorbent for As(III) removal from aqueous solutions.
    Lin L; Zhang G; Liu X; Khan ZH; Qiu W; Song Z
    Environ Pollut; 2019 Apr; 247():128-135. PubMed ID: 30669080
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Predicting Cu and Zn sorption capacity of biochar from feedstock C/N ratio and pyrolysis temperature.
    Rodríguez-Vila A; Selwyn-Smith H; Enunwa L; Smail I; Covelo EF; Sizmur T
    Environ Sci Pollut Res Int; 2018 Mar; 25(8):7730-7739. PubMed ID: 29288302
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions.
    Ijagbemi CO; Baek MH; Kim DS
    J Hazard Mater; 2009 Jul; 166(1):538-46. PubMed ID: 19131158
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Novel cellulose/montmorillonite mesoporous composite beads for dye removal in single and binary systems.
    Pan Y; Xie H; Liu H; Cai P; Xiao H
    Bioresour Technol; 2019 Aug; 286():121366. PubMed ID: 31030072
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Enhanced adsorption of aqueous chlorinated aromatic compounds by nitrogen auto-doped biochar produced through pyrolysis of rubber-seed shell.
    Wang W; Wang Z; Li K; Liu Y; Xie D; Shan S; He L; Mei Y
    Environ Technol; 2023 Feb; 44(5):631-646. PubMed ID: 34516358
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.