These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 30343799)

  • 1. A review on the demineralisation of pre- and post-pyrolysis biomass and tyre wastes.
    Iraola-Arregui I; Van Der Gryp P; Görgens JF
    Waste Manag; 2018 Sep; 79():667-688. PubMed ID: 30343799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal decomposition and gasification of biomass pyrolysis gases using a hot bed of waste derived pyrolysis char.
    Al-Rahbi AS; Onwudili JA; Williams PT
    Bioresour Technol; 2016 Mar; 204():71-79. PubMed ID: 26773946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxicity of char residues produced in the co-pyrolysis of different wastes.
    Bernardo M; Lapa N; Gonçalves M; Barbosa R; Mendes B; Pinto F; Gulyurtlu I
    Waste Manag; 2010 Apr; 30(4):628-35. PubMed ID: 19932606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyrolysis of waste tyres: a review.
    Williams PT
    Waste Manag; 2013 Aug; 33(8):1714-28. PubMed ID: 23735607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving bio-oil properties through the fast co-pyrolysis of lignocellulosic biomass and waste tyres.
    Alvarez J; Amutio M; Lopez G; Santamaria L; Bilbao J; Olazar M
    Waste Manag; 2019 Feb; 85():385-395. PubMed ID: 30803593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pyrolysis of a waste from the grinding of scrap tyres.
    Fernández AM; Barriocanal C; Alvarez R
    J Hazard Mater; 2012 Feb; 203-204():236-43. PubMed ID: 22204837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. End-of-life tyre conversion to energy: A review on pyrolysis and activated carbon production processes and their challenges.
    Zerin NH; Rasul MG; Jahirul MI; Sayem ASM
    Sci Total Environ; 2023 Dec; 905():166981. PubMed ID: 37709084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abatement of hazardous materials and biomass waste via pyrolysis and co-pyrolysis for environmental sustainability and circular economy.
    Chew KW; Chia SR; Chia WY; Cheah WY; Munawaroh HSH; Ong WJ
    Environ Pollut; 2021 Jun; 278():116836. PubMed ID: 33689952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical simulation of waste tyres gasification.
    Janajreh I; Raza SS
    Waste Manag Res; 2015 May; 33(5):460-8. PubMed ID: 25755167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of chars from the gasification and pyrolysis of rice waste streams towards their valorisation as adsorbent materials.
    Dias D; Lapa N; Bernardo M; Godinho D; Fonseca I; Miranda M; Pinto F; Lemos F
    Waste Manag; 2017 Jul; 65():186-194. PubMed ID: 28400156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of liquid chemical feedstocks by co-pyrolysis of electronic waste and biomass without formation of polybrominated dibenzo-p-dioxins.
    Liu WJ; Tian K; Jiang H; Zhang XS; Yang GX
    Bioresour Technol; 2013 Jan; 128():1-7. PubMed ID: 23196214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-pyrolysis of food waste and wood bark to produce hydrogen with minimizing pollutant emissions.
    Park C; Lee N; Kim J; Lee J
    Environ Pollut; 2021 Feb; 270():116045. PubMed ID: 33257148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of products obtained from pyrolysis and steam gasification of wood waste, RDF, and RPF.
    Hwang IH; Kobayashi J; Kawamoto K
    Waste Manag; 2014 Feb; 34(2):402-10. PubMed ID: 24246576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of chars produced in the co-pyrolysis of different wastes: decontamination study.
    Bernardo M; Gonçalves M; Lapa N; Barbosa R; Mendes B; Pinto F
    J Hazard Mater; 2012 Mar; 207-208():28-35. PubMed ID: 21899951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review on advanced catalytic co-pyrolysis of biomass and hydrogen-rich feedstock: Insights into synergistic effect, catalyst development and reaction mechanism.
    Ahmed MHM; Batalha N; Mahmudul HMD; Perkins G; Konarova M
    Bioresour Technol; 2020 Aug; 310():123457. PubMed ID: 32371033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of char derived from various types of solid wastes from the standpoint of fuel recovery and pretreatment before landfilling.
    Hwang IH; Matsuto T; Tanaka N; Sasaki Y; Tanaami K
    Waste Manag; 2007; 27(9):1155-66. PubMed ID: 16920347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermochemical conversion of waste tyres-a review.
    Labaki M; Jeguirim M
    Environ Sci Pollut Res Int; 2017 Apr; 24(11):9962-9992. PubMed ID: 27796970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wet compounding with pyrolytic carbon black from waste tyre for manufacture of new tyre - A mini review.
    Xu J; Yu J; He W; Huang J; Xu J; Li G
    Waste Manag Res; 2021 Dec; 39(12):1440-1450. PubMed ID: 33860697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyrolysis of waste animal fats in a fixed-bed reactor: production and characterization of bio-oil and bio-char.
    Ben Hassen-Trabelsi A; Kraiem T; Naoui S; Belayouni H
    Waste Manag; 2014 Jan; 34(1):210-8. PubMed ID: 24129214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent progress on biomass co-pyrolysis conversion into high-quality bio-oil.
    Hassan H; Lim JK; Hameed BH
    Bioresour Technol; 2016 Dec; 221():645-655. PubMed ID: 27671343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.