These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 30343918)
21. pH-Dependent complexation between β-lactoglobulin and lycopene: Multi-spectroscopy, molecular docking and dynamic simulation study. Wang C; Chen L; Lu Y; Liu J; Zhao R; Sun Y; Sun B; Cuina W Food Chem; 2021 Nov; 362():130230. PubMed ID: 34098435 [TBL] [Abstract][Full Text] [Related]
22. Effect of ferulic acid covalent conjugation on the functional properties and antigenicity of β-lactoglobulin. Xue YT; Han YN; Wang Y; Zhang YH; Yin YQ; Liu BH; Zhang HL; Zhao XH Food Chem; 2023 Apr; 406():135095. PubMed ID: 36463600 [TBL] [Abstract][Full Text] [Related]
23. Characterization, spectroscopic and crystallographic analyses of β-lactoglobulin and docosahexaenoic acid nanocomplexes. Chen X; Liu J; Jiang L; Zhang Y; Ren F; Zhang H Food Chem; 2020 Nov; 330():127145. PubMed ID: 32531640 [TBL] [Abstract][Full Text] [Related]
24. Proteolytic pattern, antigenicity, and serum immunoglobulin E binding of beta-lactoglobulin hydrolysates obtained by pepsin and high-pressure treatments. Chicón R; López-Fandiño R; Alonso E; Belloque J J Dairy Sci; 2008 Mar; 91(3):928-38. PubMed ID: 18292248 [TBL] [Abstract][Full Text] [Related]
25. Comparing the binding interaction between β-lactoglobulin and flavonoids with different structure by multi-spectroscopy analysis and molecular docking. Li T; Hu P; Dai T; Li P; Ye X; Chen J; Liu C Spectrochim Acta A Mol Biomol Spectrosc; 2018 Aug; 201():197-206. PubMed ID: 29753236 [TBL] [Abstract][Full Text] [Related]
26. Binding interaction of isoxsuprine hydrochloride and levothyroxine to milk β-lactoglobulin; from the perspective of comparison. Shahraki S; Shiri F Int J Biol Macromol; 2018 Apr; 109():576-588. PubMed ID: 29275203 [TBL] [Abstract][Full Text] [Related]
27. Spectroscopic, molecular docking and molecular dynamic simulation studies on the complexes of β-lactoglobulin, safranal and oleuropein. Vanaei S; Parizi MS; Abdolhosseini S; Katouzian I Int J Biol Macromol; 2020 Dec; 165(Pt B):2326-2337. PubMed ID: 33132125 [TBL] [Abstract][Full Text] [Related]
28. Reduced immunogenicity of beta-lactoglobulin by conjugating with chitosan. Aoki T; Iskandar S; Yoshida T; Takahashi K; Hattori M Biosci Biotechnol Biochem; 2006 Oct; 70(10):2349-56. PubMed ID: 17031037 [TBL] [Abstract][Full Text] [Related]
29. Antibiotic doxorubicin and its derivative bind milk β-lactoglobulin. Agudelo D; Beauregard M; Bérubé G; Tajmir-Riahi HA J Photochem Photobiol B; 2012 Dec; 117():185-92. PubMed ID: 23147200 [TBL] [Abstract][Full Text] [Related]
30. Reduction in the antigenicity of beta-lactoglobulin in whole milk powder via supercritical CO Venkatram R; García-Cano I; Jiménez-Flores R J Dairy Sci; 2024 Jul; 107(7):4216-4234. PubMed ID: 38460870 [TBL] [Abstract][Full Text] [Related]
31. Structure-function relationship of beta-lactoglobulin in the presence of dodecyltrimethyl ammonium bromide. Taheri-Kafrani A; Asgari-Mobarakeh E; Bordbar AK; Haertlé T Colloids Surf B Biointerfaces; 2010 Jan; 75(1):268-74. PubMed ID: 19781919 [TBL] [Abstract][Full Text] [Related]
32. β-lactoglobulin mutation Ala86Gln improves its ligand binding and reduces its immunoreactivity. Kazem-Farzandi N; Taheri-Kafrani A; Haertlé T Int J Biol Macromol; 2015 Nov; 81():340-8. PubMed ID: 26275462 [TBL] [Abstract][Full Text] [Related]
33. Effect of thermal and microwave processing on secondary structure of bovine β-lactoglobulin: A molecular modeling study. Saxena R; Vanga SK; Raghavan V J Food Biochem; 2019 Jul; 43(7):e12898. PubMed ID: 31353721 [TBL] [Abstract][Full Text] [Related]
34. Digestibility and antigenicity of β-lactoglobulin as affected by heat, pH and applied shear. Rahaman T; Vasiljevic T; Ramchandran L Food Chem; 2017 Feb; 217():517-523. PubMed ID: 27664667 [TBL] [Abstract][Full Text] [Related]
35. Mechanism of Reduction in IgG and IgE Binding of β-Lactoglobulin Induced by Ultrasound Pretreatment Combined with Dry-State Glycation: A Study Using Conventional Spectrometry and High-Resolution Mass Spectrometry. Yang W; Tu Z; Wang H; Zhang L; Xu S; Niu C; Yao H; Kaltashov IA J Agric Food Chem; 2017 Sep; 65(36):8018-8027. PubMed ID: 28800703 [TBL] [Abstract][Full Text] [Related]
36. Effect of metal ions on the binding reaction of (-)-epigallocatechin gallate to β-lactoglobulin. Zhang L; Sahu ID; Xu M; Wang Y; Hu X Food Chem; 2017 Apr; 221():1923-1929. PubMed ID: 27979181 [TBL] [Abstract][Full Text] [Related]
37. Probing the binding sites of resveratrol, genistein, and curcumin with milk β-lactoglobulin. Kanakis CD; Tarantilis PA; Polissiou MG; Tajmir-Riahi HA J Biomol Struct Dyn; 2013 Dec; 31(12):1455-66. PubMed ID: 23249100 [TBL] [Abstract][Full Text] [Related]
38. Glycation of β-lactoglobulin under dynamic high pressure microfluidization treatment: Effects on IgE-binding capacity and conformation. Chen Y; Tu Z; Wang H; Zhang L; Sha X; Pang J; Yang P; Liu G; Yang W Food Res Int; 2016 Nov; 89(Pt 1):882-888. PubMed ID: 28460991 [TBL] [Abstract][Full Text] [Related]
39. Effects of high hydrostatic pressure on the structure and potential allergenicity of the major allergen bovine β-lactoglobulin. Meng X; Bai Y; Gao J; Li X; Chen H Food Chem; 2017 Mar; 219():290-296. PubMed ID: 27765229 [TBL] [Abstract][Full Text] [Related]
40. Reduced immunogenicity of beta-lactoglobulin by conjugation with acidic oligosaccharides. Hattori M; Miyakawa S; Ohama Y; Kawamura H; Yoshida T; To-o K; Kuriki T; Takahashi K J Agric Food Chem; 2004 Jul; 52(14):4546-53. PubMed ID: 15237965 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]