These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 30344453)
1. A Comprehensive Comparative Study on Inductive and Ultrasonic Wireless Power Transmission to Biomedical Implants. Ibrahim A; Meng M; Kiani M IEEE Sens J; 2018 May; 18(9):3813-3826. PubMed ID: 30344453 [TBL] [Abstract][Full Text] [Related]
2. Design and Optimization of Ultrasonic Wireless Power Transmission Links for Millimeter-Sized Biomedical Implants. Meng M; Kiani M IEEE Trans Biomed Circuits Syst; 2017 Feb; 11(1):98-107. PubMed ID: 27662684 [TBL] [Abstract][Full Text] [Related]
3. A Figure-of-Merit for Design and Optimization of Inductive Power Transmission Links for Millimeter-Sized Biomedical Implants. Ibrahim A; Kiani M IEEE Trans Biomed Circuits Syst; 2016 Dec; 10(6):1100-1111. PubMed ID: 28055825 [TBL] [Abstract][Full Text] [Related]
4. Optimal resonance configuration for ultrasonic wireless power transmission to millimeter-sized biomedical implants. Miao Meng ; Kiani M Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1934-1937. PubMed ID: 28268706 [TBL] [Abstract][Full Text] [Related]
5. Optimal Design of Wireless Power Transmission Links for Millimeter-Sized Biomedical Implants. Ahn D; Ghovanloo M IEEE Trans Biomed Circuits Syst; 2016 Feb; 10(1):125-37. PubMed ID: 25616074 [TBL] [Abstract][Full Text] [Related]
6. A 6.78-MHz Robust WPT System with Inductive Link Bandwidth Extended for cm-Sized Implantable Medical Devices. Karimi M; Jouaicha H; Lellouche F; Bouchard PA; Sawan M; Gosselin B Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4196-4199. PubMed ID: 33018922 [TBL] [Abstract][Full Text] [Related]
7. Design and Optimization of Ultrasonic Links With Phased Arrays for Wireless Power Transmission to Biomedical Implants. Kashani Z; Ilham SJ; Kiani M IEEE Trans Biomed Circuits Syst; 2022 Feb; 16(1):64-78. PubMed ID: 34986100 [TBL] [Abstract][Full Text] [Related]
8. Inductive power transmission to millimeter-sized biomedical implants using printed spiral coils. Ibrahim A; Kiani M Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4800-4803. PubMed ID: 28269344 [TBL] [Abstract][Full Text] [Related]
9. Design and Optimization of a 3-Coil Inductive Link for Efficient Wireless Power Transmission. Kiani M; Jow UM; Ghovanloo M IEEE Trans Biomed Circuits Syst; 2011 Jul; 99():1. PubMed ID: 21922034 [TBL] [Abstract][Full Text] [Related]
10. Optimal wireless receiver structure for omnidirectional inductive power transmission to biomedical implants. Gougheri HS; Kiani M Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1975-1978. PubMed ID: 28268716 [TBL] [Abstract][Full Text] [Related]
11. Safe inductive power transmission to millimeter-sized implantable microelectronics devices. Ibrahim A; Kiani M Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():817-20. PubMed ID: 26736387 [TBL] [Abstract][Full Text] [Related]
12. Optimal Design of a Resonance-Based Voltage Boosting Rectifier for Wireless Power Transmission. Lim J; Lee B; Ghovanloo M IEEE Trans Ind Electron; 2018 Feb; 65(2):1645-1654. PubMed ID: 29249849 [TBL] [Abstract][Full Text] [Related]
13. Optimal frequency for powering millimeter-sized biomedical implants inside an inductively-powered homecage. Gougheri HS; Kiani M Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4804-4807. PubMed ID: 28269345 [TBL] [Abstract][Full Text] [Related]
14. Multi-resonator Wireless Inductive Power Link for Wearables on the 2D Surface and Implants in 3D Space of the Human Body. Saha R; Kaffash Z; Mirbozorgi SA IEEE Trans Biomed Circuits Syst; 2024 Oct; 18(5):1024-1036. PubMed ID: 38466594 [TBL] [Abstract][Full Text] [Related]
15. A Triple-Loop Inductive Power Transmission System for Biomedical Applications. Lee B; Kiani M; Ghovanloo M IEEE Trans Biomed Circuits Syst; 2016 Feb; 10(1):138-48. PubMed ID: 25667358 [TBL] [Abstract][Full Text] [Related]
16. A figure-of-merit for design of high performance inductive power transmission links for implantable microelectronic devices. Kiani M; Ghovanloo M Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():847-50. PubMed ID: 23366025 [TBL] [Abstract][Full Text] [Related]
17. A Multi-Cycle Q-Modulation for Dynamic Optimization of Inductive Links. Lee B; Yeon P; Ghovanloo M IEEE Trans Ind Electron; 2016 Aug; 63(8):5091-5100. PubMed ID: 27493445 [TBL] [Abstract][Full Text] [Related]
18. A Figure-of-Merit for Designing High-Performance Inductive Power Transmission Links. Kiani M; Ghovanloo M IEEE Trans Ind Electron; 2012 Nov; 60(11):5292-5305. PubMed ID: 25382898 [TBL] [Abstract][Full Text] [Related]
19. Feasibility Study on Active Back Telemetry and Power Transmission Through an Inductive Link for Millimeter-Sized Biomedical Implants. Yeon P; Mirbozorgi SA; Lim J; Ghovanloo M IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1366-1376. PubMed ID: 29293426 [TBL] [Abstract][Full Text] [Related]
20. A Q-Modulation Technique for Efficient Inductive Power Transmission. Kiani M; Lee B; Yeon P; Ghovanloo M IEEE J Solid-State Circuits; 2015 Dec; 50(12):2839-2848. PubMed ID: 27087699 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]