These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 30344459)

  • 1. Biodistribution and Tumors MRI Contrast Enhancement of Magnetic Nanocubes, Nanoclusters, and Nanorods in Multiple Mice Models.
    Naumenko V; Garanina A; Nikitin A; Vodopyanov S; Vorobyeva N; Tsareva Y; Kunin M; Ilyasov A; Semkina A; Chekhonin V; Abakumov M; Majouga A
    Contrast Media Mol Imaging; 2018; 2018():8264208. PubMed ID: 30344459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pH-responsive pHLIP (pH low insertion peptide) nanoclusters of superparamagnetic iron oxide nanoparticles as a tumor-selective MRI contrast agent.
    Wei Y; Liao R; Mahmood AA; Xu H; Zhou Q
    Acta Biomater; 2017 Jun; 55():194-203. PubMed ID: 28363789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New Insight about Biocompatibility and Biodegradability of Iron Oxide Magnetic Nanoparticles: Stereological and In Vivo MRI Monitor.
    Nosrati H; Salehiabar M; Fridoni M; Abdollahifar MA; Kheiri Manjili H; Davaran S; Danafar H
    Sci Rep; 2019 May; 9(1):7173. PubMed ID: 31073222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anti-HER2 antibody and ScFvEGFR-conjugated antifouling magnetic iron oxide nanoparticles for targeting and magnetic resonance imaging of breast cancer.
    Chen H; Wang L; Yu Q; Qian W; Tiwari D; Yi H; Wang AY; Huang J; Yang L; Mao H
    Int J Nanomedicine; 2013; 8():3781-94. PubMed ID: 24124366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Vivo HER2-Targeted Magnetic Resonance Tumor Imaging Using Iron Oxide Nanoparticles Conjugated with Anti-HER2 Fragment Antibody.
    Ding N; Sano K; Kanazaki K; Ohashi M; Deguchi J; Kanada Y; Ono M; Saji H
    Mol Imaging Biol; 2016 Dec; 18(6):870-876. PubMed ID: 27351762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic targeting combined with active targeting of dual-ligand iron oxide nanoprobes to promote the penetration depth in tumors for effective magnetic resonance imaging and hyperthermia.
    Chen L; Wu Y; Wu H; Li J; Xie J; Zang F; Ma M; Gu N; Zhang Y
    Acta Biomater; 2019 Sep; 96():491-504. PubMed ID: 31302299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic Nanoparticles as MRI Contrast Agents.
    Avasthi A; Caro C; Pozo-Torres E; Leal MP; García-Martín ML
    Top Curr Chem (Cham); 2020 May; 378(3):40. PubMed ID: 32382832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of micelle-encapsulated extremely small sized iron oxide nanoparticles as a T1 contrast imaging agent: biodistribution and safety profile.
    Suh M; Park JY; Ko GB; Kim JY; Hwang DW; Rees L; Conway GE; Doak SH; Kang H; Lee N; Hyeon T; Lee YS; Lee DS
    J Nanobiotechnology; 2024 Jul; 22(1):419. PubMed ID: 39014410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multicomponent, peptide-targeted glycol chitosan nanoparticles containing ferrimagnetic iron oxide nanocubes for bladder cancer multimodal imaging.
    Key J; Dhawan D; Cooper CL; Knapp DW; Kim K; Kwon IC; Choi K; Park K; Decuzzi P; Leary JF
    Int J Nanomedicine; 2016; 11():4141-55. PubMed ID: 27621615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bevacizumab and near infrared probe conjugated iron oxide nanoparticles for vascular endothelial growth factor targeted MR and optical imaging.
    Lin R; Huang J; Wang L; Li Y; Lipowska M; Wu H; Yang J; Mao H
    Biomater Sci; 2018 May; 6(6):1517-1525. PubMed ID: 29652061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold-coated magnetic nanoparticle as a nanotheranostic agent for magnetic resonance imaging and photothermal therapy of cancer.
    Eyvazzadeh N; Shakeri-Zadeh A; Fekrazad R; Amini E; Ghaznavi H; Kamran Kamrava S
    Lasers Med Sci; 2017 Sep; 32(7):1469-1477. PubMed ID: 28674789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theranostic nanoparticles based on magnetic nanoparticles: design, preparation, characterization, and evaluation as novel anticancer drug carrier and MRI contrast agent.
    Nosrati H; Salehiabar M; Kheiri Manjili H; Davaran S; Danafar H
    Drug Dev Ind Pharm; 2018 Oct; 44(10):1668-1678. PubMed ID: 29848101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and characterization of lisinopril-loaded superparamagnetic nanoparticles as a new contrast agent for in vitro, in vivo MRI imaging, diagnose the tumors and drug delivery system.
    Abbasi Pour S; Shaterian HR
    J Mater Sci Mater Med; 2017 Jun; 28(6):91. PubMed ID: 28497361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the use of superparamagnetic hydroxyapatite nanoparticles as an agent for magnetic and nuclear in vivo imaging.
    Adamiano A; Iafisco M; Sandri M; Basini M; Arosio P; Canu T; Sitia G; Esposito A; Iannotti V; Ausanio G; Fragogeorgi E; Rouchota M; Loudos G; Lascialfari A; Tampieri A
    Acta Biomater; 2018 Jun; 73():458-469. PubMed ID: 29689381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noninvasive Imaging of Liposomal Delivery of Superparamagnetic Iron Oxide Nanoparticles to Orthotopic Human Breast Tumor in Mice.
    Kato Y; Zhu W; Backer MV; Neoh CC; Hapuarachchige S; Sarkar SK; Backer JM; Artemov D
    Pharm Res; 2015 Nov; 32(11):3746-3755. PubMed ID: 26078000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic single-walled carbon nanotubes as efficient drug delivery nanocarriers in breast cancer murine model: noninvasive monitoring using diffusion-weighted magnetic resonance imaging as sensitive imaging biomarker.
    Al Faraj A; Shaik AP; Shaik AS
    Int J Nanomedicine; 2015; 10():157-68. PubMed ID: 25565811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Smart Design of a pH-Responsive System Based on pHLIP-Modified Magnetite Nanoparticles for Tumor MRI.
    Demin AM; Pershina AG; Minin AS; Brikunova OY; Murzakaev AM; Perekucha NA; Romashchenko AV; Shevelev OB; Uimin MA; Byzov IV; Malkeyeva D; Kiseleva E; Efimova LV; Vtorushin SV; Ogorodova LM; Krasnov VP
    ACS Appl Mater Interfaces; 2021 Aug; 13(31):36800-36815. PubMed ID: 34324807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocompatibility and proteomic profiling of DMSA-coated iron nanocubes in a human glioblastoma cell line.
    Ulanova M; Gloag L; Kim CK; Bongers A; Kim Duong HT; Gooding JJ; Tilley RD; Sachdev PS; Braidy N
    Nanomedicine (Lond); 2024 Feb; 19(4):303-323. PubMed ID: 38270934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocompatible Low-Retention Superparamagnetic Iron Oxide Nanoclusters as Contrast Agents for Magnetic Resonance Imaging of Liver Tumor.
    Wei Y; Liao R; Liu H; Li H; Xu H; Zhou Q
    J Biomed Nanotechnol; 2015 May; 11(5):854-64. PubMed ID: 26349397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification and biodistribution of iron oxide nanoparticles in the primary clearance organs of mice using T
    Zhang J; Ring HL; Hurley KR; Shao Q; Carlson CS; Idiyatullin D; Manuchehrabadi N; Hoopes PJ; Haynes CL; Bischof JC; Garwood M
    Magn Reson Med; 2017 Aug; 78(2):702-712. PubMed ID: 27667655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.