These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 30345299)

  • 1. Synergistic Effects of Controlled-Released BMP-2 and VEGF from nHAC/PLGAs Scaffold on Osteogenesis.
    Wang T; Guo S; Zhang H
    Biomed Res Int; 2018; 2018():3516463. PubMed ID: 30345299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of BMP-2 and VEGF loaded 3D printed hydroxyapatite composite scaffolds with enhanced osteogenic capacity in vitro and in vivo.
    Chen S; Shi Y; Zhang X; Ma J
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110893. PubMed ID: 32409051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential VEGF and BMP-2 releasing PLA-PEG-PLA scaffolds for bone tissue engineering: I. Design and in vitro tests.
    Eğri S; Eczacıoğlu N
    Artif Cells Nanomed Biotechnol; 2017 Mar; 45(2):321-329. PubMed ID: 26912262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A differential effect of bone morphogenetic protein-2 and vascular endothelial growth factor release timing on osteogenesis at ectopic and orthotopic sites in a large-animal model.
    Geuze RE; Theyse LF; Kempen DH; Hazewinkel HA; Kraak HY; Oner FC; Dhert WJ; Alblas J
    Tissue Eng Part A; 2012 Oct; 18(19-20):2052-62. PubMed ID: 22563713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced angiogenesis and osteogenesis in critical bone defects by the controlled release of BMP-2 and VEGF: implantation of electron beam melting-fabricated porous Ti6Al4V scaffolds incorporating growth factor-doped fibrin glue.
    Lv J; Xiu P; Tan J; Jia Z; Cai H; Liu Z
    Biomed Mater; 2015 Jun; 10(3):035013. PubMed ID: 26107105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone formation of a porous Gelatin-Pectin-biphasic calcium phosphate composite in presence of BMP-2 and VEGF.
    Amirian J; Linh NT; Min YK; Lee BT
    Int J Biol Macromol; 2015 May; 76():10-24. PubMed ID: 25709009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [A novel tissue-engineered bone constructed by using human adipose-derived stem cells and biomimetic calcium phosphate scaffold coprecipitated with bone morphogenetic protein-2].
    Jiang WR; Zhang X; Liu YS; Wu G; Ge YJ; Zhou YS
    Beijing Da Xue Xue Bao Yi Xue Ban; 2017 Feb; 49(1):6-15. PubMed ID: 28202997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of VEGF/BMP-2 on the proliferation and osteogenetic differentiation of rat bone mesenchymal stem cells on PLGA/gelatin composite scaffold.
    An G; Zhang WB; Ma DK; Lu B; Wei GJ; Guang Y; Ru CH; Wang YS
    Eur Rev Med Pharmacol Sci; 2017 May; 21(10):2316-2328. PubMed ID: 28617560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering.
    Lee SJ; Lee D; Yoon TR; Kim HK; Jo HH; Park JS; Lee JH; Kim WD; Kwon IK; Park SA
    Acta Biomater; 2016 Aug; 40():182-191. PubMed ID: 26868173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BMP-2-releasing gelatin microspheres/PLGA scaffolds for bone repairment of X-ray-radiated rabbit radius defects.
    Xia P; Wang S; Qi Z; Zhang W; Sun Y
    Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):1662-1673. PubMed ID: 31032645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large scale segmental bone defect healing through the combined delivery of VEGF and BMP-2 from biofunctionalized cortical allografts.
    Sharmin F; O'Sullivan M; Malinowski S; Lieberman JR; Khan Y
    J Biomed Mater Res B Appl Biomater; 2019 May; 107(4):1002-1010. PubMed ID: 30296356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross-Talk Between VEGF and BMP-6 Pathways Accelerates Osteogenic Differentiation of Human Adipose-Derived Stem Cells.
    Li CJ; Madhu V; Balian G; Dighe AS; Cui Q
    J Cell Physiol; 2015 Nov; 230(11):2671-82. PubMed ID: 25753222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoparticle-modified chitosan-agarose-gelatin scaffold for sustained release of SDF-1 and BMP-2.
    Wang B; Guo Y; Chen X; Zeng C; Hu Q; Yin W; Li W; Xie H; Zhang B; Huang X; Yu F
    Int J Nanomedicine; 2018; 13():7395-7408. PubMed ID: 30519022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Chemotactic Functional Scaffold with VEGF-Releasing Peptide Amphiphiles Facilitates Bone Regeneration by BMP-2 in a Large-Scale Rodent Cranial Defect Model.
    Bakshi R; Hokugo A; Khalil D; Wang L; Shibuya Y; Zhou S; Zhang Z; Rezzadeh K; McClendon M; Stupp SI; Jarrahy R
    Plast Reconstr Surg; 2021 Feb; 147(2):386-397. PubMed ID: 33235044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental study of the synergistic effect and network regulation mechanisms of an applied combination of BMP-2, VEGF, and TGF-β1 on osteogenic differentiation.
    Wang Z; Sun J; Li Y; Chen C; Xu Y; Zang X; Li L; Meng K
    J Cell Biochem; 2020 Mar; 121(3):2394-2405. PubMed ID: 31646676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, fabrication and in vitro evaluation of a novel polymer-hydrogel hybrid scaffold for bone tissue engineering.
    Igwe JC; Mikael PE; Nukavarapu SP
    J Tissue Eng Regen Med; 2014 Feb; 8(2):131-42. PubMed ID: 22689304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled dual delivery of BMP-2 and dexamethasone by nanoparticle-embedded electrospun nanofibers for the efficient repair of critical-sized rat calvarial defect.
    Li L; Zhou G; Wang Y; Yang G; Ding S; Zhou S
    Biomaterials; 2015 Jan; 37():218-29. PubMed ID: 25453952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of different sustained bone morphogenetic protein-2 release kinetics on bone formation in poly(propylene fumarate) scaffolds.
    Olthof MGL; Kempen DHR; Herrick JL; Yaszemski MJ; Dhert WJA; Lu L
    J Biomed Mater Res B Appl Biomater; 2018 Feb; 106(2):477-487. PubMed ID: 28186684
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Bayer EA; Jordan J; Roy A; Gottardi R; Fedorchak MV; Kumta PN; Little SR
    Tissue Eng Part A; 2017 Dec; 23(23-24):1382-1393. PubMed ID: 28537482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repair of bone defect in femoral condyle using microencapsulated chitosan, nanohydroxyapatite/collagen and poly(L-lactide)-based microsphere-scaffold delivery system.
    Niu X; Fan Y; Liu X; Li X; Li P; Wang J; Sha Z; Feng Q
    Artif Organs; 2011 Jul; 35(7):E119-28. PubMed ID: 21658081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.