BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 30345426)

  • 1. Constructing Multi-frequency High-Order Functional Connectivity Network for Diagnosis of Mild Cognitive Impairment.
    Zhang Y; Zhang H; Chen X; Shen D
    Connectomics Neuroimaging (2017); 2017; 10511():9-16. PubMed ID: 30345426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid High-order Functional Connectivity Networks Using Resting-state Functional MRI for Mild Cognitive Impairment Diagnosis.
    Zhang Y; Zhang H; Chen X; Lee SW; Shen D
    Sci Rep; 2017 Jul; 7(1):6530. PubMed ID: 28747782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyper-connectivity of functional networks for brain disease diagnosis.
    Jie B; Wee CY; Shen D; Zhang D
    Med Image Anal; 2016 Aug; 32():84-100. PubMed ID: 27060621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiview Feature Learning With Multiatlas-Based Functional Connectivity Networks for MCI Diagnosis.
    Zhang Y; Zhang H; Adeli E; Chen X; Liu M; Shen D
    IEEE Trans Cybern; 2022 Jul; 52(7):6822-6833. PubMed ID: 33306476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-order resting-state functional connectivity network for MCI classification.
    Chen X; Zhang H; Gao Y; Wee CY; Li G; Shen D;
    Hum Brain Mapp; 2016 Sep; 37(9):3282-96. PubMed ID: 27144538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diagnosis of Autism Spectrum Disorders Using Multi-Level High-Order Functional Networks Derived From Resting-State Functional MRI.
    Zhao F; Zhang H; Rekik I; An Z; Shen D
    Front Hum Neurosci; 2018; 12():184. PubMed ID: 29867410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Treatment-naïve first episode depression classification based on high-order brain functional network.
    Zheng Y; Chen X; Li D; Liu Y; Tan X; Liang Y; Zhang H; Qiu S; Shen D
    J Affect Disord; 2019 Sep; 256():33-41. PubMed ID: 31158714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer's disease.
    Khazaee A; Ebrahimzadeh A; Babajani-Feremi A
    Brain Imaging Behav; 2016 Sep; 10(3):799-817. PubMed ID: 26363784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sparse temporally dynamic resting-state functional connectivity networks for early MCI identification.
    Wee CY; Yang S; Yap PT; Shen D;
    Brain Imaging Behav; 2016 Jun; 10(2):342-56. PubMed ID: 26123390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strength and Similarity Guided Group-level Brain Functional Network Construction for MCI Diagnosis.
    Zhang Y; Zhang H; Chen X; Liu M; Zhu X; Lee SW; Shen D
    Pattern Recognit; 2019 Apr; 88():421-430. PubMed ID: 31579344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered functional brain networks in amnestic mild cognitive impairment: a resting-state fMRI study.
    Cai S; Chong T; Peng Y; Shen W; Li J; von Deneen KM; Huang L;
    Brain Imaging Behav; 2017 Jun; 11(3):619-631. PubMed ID: 26972578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple functional connectivity networks fusion for schizophrenia diagnosis.
    Zou H; Yang J
    Med Biol Eng Comput; 2020 Aug; 58(8):1779-1790. PubMed ID: 32495268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inter-subject Similarity Guided Brain Network Modeling for MCI Diagnosis.
    Zhang Y; Zhang H; Chen X; Liu M; Zhu X; Shen D
    Mach Learn Med Imaging; 2017 Sep; 10541():168-175. PubMed ID: 30320309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical High-Order Functional Connectivity Networks and Selective Feature Fusion for MCI Classification.
    Chen X; Zhang H; Lee SW; Shen D;
    Neuroinformatics; 2017 Jul; 15(3):271-284. PubMed ID: 28555371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Learning Classification Combining Multiple Features of A Hyper-Network of fMRI Data in Alzheimer's Disease.
    Guo H; Zhang F; Chen J; Xu Y; Xiang J
    Front Neurosci; 2017; 11():615. PubMed ID: 29209156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning Brain Connectivity Sub-networks by Group- Constrained Sparse Inverse Covariance Estimation for Alzheimer's Disease Classification.
    Li Y; Liu J; Huang J; Li Z; Liang P
    Front Neuroinform; 2018; 12():58. PubMed ID: 30258358
    [No Abstract]   [Full Text] [Related]  

  • 17. Ensemble Hierarchical High-Order Functional Connectivity Networks for MCI Classification.
    Chen X; Zhang H; Shen D
    Med Image Comput Comput Assist Interv; 2016 Oct; 9901():18-25. PubMed ID: 28936492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning Pairwise-Similarity Guided Sparse Functional Connectivity Network for MCI Classification.
    Chen X; Zhang H; Zhang Y; Yang J; Shen D
    Asian Conf Pattern Recognit; 2018 Nov; 2017():917-922. PubMed ID: 30627592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resting state networks in empirical and simulated dynamic functional connectivity.
    Glomb K; Ponce-Alvarez A; Gilson M; Ritter P; Deco G
    Neuroimage; 2017 Oct; 159():388-402. PubMed ID: 28782678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diagnosis of early Alzheimer's disease based on dynamic high order networks.
    Lei B; Yu S; Zhao X; Frangi AF; Tan EL; Elazab A; Wang T; Wang S
    Brain Imaging Behav; 2021 Feb; 15(1):276-287. PubMed ID: 32789620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.