BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 30345455)

  • 21. Looking into individual coffee beans during the roasting process: direct micro-probe sampling on-line photo-ionisation mass spectrometric analysis of coffee roasting gases.
    Hertz-Schünemann R; Streibel T; Ehlert S; Zimmermann R
    Anal Bioanal Chem; 2013 Sep; 405(22):7083-96. PubMed ID: 23657458
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemical characterization and antioxidant properties of coffee melanoidins.
    Borrelli RC; Visconti A; Mennella C; Anese M; Fogliano V
    J Agric Food Chem; 2002 Oct; 50(22):6527-33. PubMed ID: 12381145
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of galactomannan derivatives in roasted coffee beverages.
    Nunes FM; Reis A; Domingues MR; Coimbra MA
    J Agric Food Chem; 2006 May; 54(9):3428-39. PubMed ID: 16637704
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of a sensitive method for the determination of acrylamide in coffee using high-performance liquid chromatography coupled to a hybrid quadrupole Orbitrap mass spectrometer.
    Pugajeva I; Jaunbergs J; Bartkevics V
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015; 32(2):170-9. PubMed ID: 25530195
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of ochratoxin a in coffee by solid-phase cleanup and narrow-bore liquid chromatography-fluorescence detector-mass spectrometry.
    Ventura M; Vallejos C; Anaya IA; Broto-Puig F; Agut M; Comellas L
    J Agric Food Chem; 2003 Dec; 51(26):7564-7. PubMed ID: 14664508
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of the roasting method on the content of 5-hydroxytryptamides of carboxylic acids in roasted coffee beans.
    Nebesny E; Budryn G
    Nahrung; 2002 Aug; 46(4):279-82. PubMed ID: 12224425
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In depth study of acrylamide formation in coffee during roasting: role of sucrose decomposition and lipid oxidation.
    Kocadağlı T; Göncüoğlu N; Hamzalıoğlu A; Gökmen V
    Food Funct; 2012 Sep; 3(9):970-5. PubMed ID: 22796869
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alkylpyridiniums. 2. Isolation and quantification in roasted and ground coffees.
    Stadler RH; Varga N; Milo C; Schilter B; Vera FA; Welti DH
    J Agric Food Chem; 2002 Feb; 50(5):1200-6. PubMed ID: 11853504
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On-line process monitoring of coffee roasting by resonant laser ionisation time-of-flight mass spectrometry: bridging the gap from industrial batch roasting to flavour formation inside an individual coffee bean.
    Hertz-Schünemann R; Dorfner R; Yeretzian C; Streibel T; Zimmermann R
    J Mass Spectrom; 2013 Dec; 48(12):1253-65. PubMed ID: 24338878
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Different inoculation methods for semi-dry processed coffee using yeasts as starter cultures.
    Martinez SJ; Bressani APP; Miguel MGDCP; Dias DR; Schwan RF
    Food Res Int; 2017 Dec; 102():333-340. PubMed ID: 29195956
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The influence of high-temperature heating on composition and thermo-oxidative stability of the oil extracted from Arabica coffee beans.
    Raba DN; Chambre DR; Copolovici DM; Moldovan C; Copolovici LO
    PLoS One; 2018; 13(7):e0200314. PubMed ID: 29995918
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of antioxidant activity between green and roasted coffee beans using molecular methods.
    Priftis A; Stagos D; Konstantinopoulos K; Tsitsimpikou C; Spandidos DA; Tsatsakis AM; Tzatzarakis MN; Kouretas D
    Mol Med Rep; 2015 Nov; 12(5):7293-302. PubMed ID: 26458565
    [TBL] [Abstract][Full Text] [Related]  

  • 33. LC-MS based screening and targeted profiling methods for complex plant: coffee a case study.
    da Rosa JS; Freitas-Silva O; Pacheco S; de Oliveira Godoy RL; de Rezende CM
    Curr Drug Metab; 2012 Nov; 13(9):1244-50. PubMed ID: 22519371
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Homostachydrine (pipecolic acid betaine) as authentication marker of roasted blends of Coffea arabica and Coffea canephora (Robusta) beans.
    Servillo L; Giovane A; Casale R; Cautela D; D'Onofrio N; Balestrieri ML; Castaldo D
    Food Chem; 2016 Aug; 205():52-7. PubMed ID: 27006213
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative studies on the influence of the bean roasting parameters and hot water percolation on the concentrations of bitter compounds in coffee brew.
    Blumberg S; Frank O; Hofmann T
    J Agric Food Chem; 2010 Mar; 58(6):3720-8. PubMed ID: 20180507
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Non-separative headspace solid phase microextraction-mass spectrometry profile as a marker to monitor coffee roasting degree.
    Liberto E; Ruosi MR; Cordero C; Rubiolo P; Bicchi C; Sgorbini B
    J Agric Food Chem; 2013 Feb; 61(8):1652-60. PubMed ID: 23088249
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemical characterisation of non-defective and defective green arabica and robusta coffees by electrospray ionization-mass spectrometry (ESI-MS).
    Mendonça JC; Franca AS; Oliveira LS; Nunes M
    Food Chem; 2008 Nov; 111(2):490-7. PubMed ID: 26047455
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Changes in headspace volatile concentrations of coffee brews caused by the roasting process and the brewing procedure.
    López-Galilea I; Fournier N; Cid C; Guichard E
    J Agric Food Chem; 2006 Nov; 54(22):8560-6. PubMed ID: 17061834
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of coverage, retention patterns, and selectivity of seven liquid chromatographic methods for metabolomics.
    Wernisch S; Pennathur S
    Anal Bioanal Chem; 2016 Sep; 408(22):6079-91. PubMed ID: 27370688
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.