These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 30345502)

  • 21. Optimization of extended Kozak elements enhances recombinant proteins expression in CHO cells.
    Li ZM; Lin Y; Luo CH; Sun QL; Mi CL; Wang XY; Wang TY
    J Biotechnol; 2024 Sep; 392():96-102. PubMed ID: 38960098
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protein-Specific Signal Peptides for Mammalian Vector Engineering.
    O'Neill P; Mistry RK; Brown AJ; James DC
    ACS Synth Biol; 2023 Aug; 12(8):2339-2352. PubMed ID: 37487508
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Towards next-generation model microorganism chassis for biomanufacturing.
    Liu Y; Su A; Li J; Ledesma-Amaro R; Xu P; Du G; Liu L
    Appl Microbiol Biotechnol; 2020 Nov; 104(21):9095-9108. PubMed ID: 32970182
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enzyme capacity-based genome scale modelling of CHO cells.
    Yeo HC; Hong J; Lakshmanan M; Lee DY
    Metab Eng; 2020 Jul; 60():138-147. PubMed ID: 32330653
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genomic sequencing and analysis of a Chinese hamster ovary cell line using Illumina sequencing technology.
    Hammond S; Swanberg JC; Kaplarevic M; Lee KH
    BMC Genomics; 2011 Jan; 12():67. PubMed ID: 21269493
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The emerging CHO systems biology era: harnessing the 'omics revolution for biotechnology.
    Kildegaard HF; Baycin-Hizal D; Lewis NE; Betenbaugh MJ
    Curr Opin Biotechnol; 2013 Dec; 24(6):1102-7. PubMed ID: 23523260
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cell engineering and cultivation of chinese hamster ovary (CHO) cells.
    Omasa T; Onitsuka M; Kim WD
    Curr Pharm Biotechnol; 2010 Apr; 11(3):233-40. PubMed ID: 20210750
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Higher productivity of growth-arrested Chinese hamster ovary cells expressing the cyclin-dependent kinase inhibitor p27.
    Mazur X; Fussenegger M; Renner WA; Bailey JE
    Biotechnol Prog; 1998; 14(5):705-13. PubMed ID: 9758659
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-level expression of proteins in mammalian cells using transcription regulatory sequences from the Chinese hamster EF-1alpha gene.
    Running Deer J; Allison DS
    Biotechnol Prog; 2004; 20(3):880-9. PubMed ID: 15176895
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Retrosynthetic design of heterologous pathways.
    Carbonell P; Planson AG; Faulon JL
    Methods Mol Biol; 2013; 985():149-73. PubMed ID: 23417804
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transient production of recombinant proteins by Chinese hamster ovary cells using polyethyleneimine/DNA complexes in combination with microtubule disrupting anti-mitotic agents.
    Tait AS; Brown CJ; Galbraith DJ; Hines MJ; Hoare M; Birch JR; James DC
    Biotechnol Bioeng; 2004 Dec; 88(6):707-21. PubMed ID: 15532040
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineered and Natural Promoters and Chromatin-Modifying Elements for Recombinant Protein Expression in CHO Cells.
    Romanova N; Noll T
    Biotechnol J; 2018 Mar; 13(3):e1700232. PubMed ID: 29145694
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chinese hamster ovary (CHO) host cell engineering to increase sialylation of recombinant therapeutic proteins by modulating sialyltransferase expression.
    Lin N; Mascarenhas J; Sealover NR; George HJ; Brooks J; Kayser KJ; Gau B; Yasa I; Azadi P; Archer-Hartmann S
    Biotechnol Prog; 2015; 31(2):334-46. PubMed ID: 25641927
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-level recombinant protein production in CHO cells using an adenoviral vector and the cumate gene-switch.
    Gaillet B; Gilbert R; Amziani R; Guilbault C; Gadoury C; Caron AW; Mullick A; Garnier A; Massie B
    Biotechnol Prog; 2007; 23(1):200-9. PubMed ID: 17269689
    [TBL] [Abstract][Full Text] [Related]  

  • 35. De Novo metabolic engineering and the promise of synthetic DNA.
    Klein-Marcuschamer D; Yadav VG; Ghaderi A; Stephanopoulos GN
    Adv Biochem Eng Biotechnol; 2010; 120():101-31. PubMed ID: 20186529
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamic gene expression for metabolic engineering of mammalian cells in culture.
    Le H; Vishwanathan N; Kantardjieff A; Doo I; Srienc M; Zheng X; Somia N; Hu WS
    Metab Eng; 2013 Nov; 20():212-20. PubMed ID: 24055788
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of intracellular IgG secretion in Chinese hamster ovary cells to improve IgG production.
    Kaneyoshi K; Uchiyama K; Onitsuka M; Yamano N; Koga Y; Omasa T
    J Biosci Bioeng; 2019 Jan; 127(1):107-113. PubMed ID: 30017708
    [TBL] [Abstract][Full Text] [Related]  

  • 38. miRNA engineering of CHO cells facilitates production of difficult-to-express proteins and increases success in cell line development.
    Fischer S; Marquart KF; Pieper LA; Fieder J; Gamer M; Gorr I; Schulz P; Bradl H
    Biotechnol Bioeng; 2017 Jul; 114(7):1495-1510. PubMed ID: 28262952
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimizing eukaryotic cell hosts for protein production through systems biotechnology and genome-scale modeling.
    Gutierrez JM; Lewis NE
    Biotechnol J; 2015 Jul; 10(7):939-49. PubMed ID: 26099571
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimizing scaleup yield for protein production: Computationally Optimized DNA Assembly (CODA) and Translation Engineering.
    Hatfield GW; Roth DA
    Biotechnol Annu Rev; 2007; 13():27-42. PubMed ID: 17875472
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.