These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
305 related articles for article (PubMed ID: 30345554)
1. When does measurement error in covariates impact causal effect estimates? Analytic derivations of different scenarios and an empirical illustration. Sengewald MA; Steiner PM; Pohl S Br J Math Stat Psychol; 2019 May; 72(2):244-270. PubMed ID: 30345554 [TBL] [Abstract][Full Text] [Related]
2. Compensation and Amplification of Attenuation Bias in Causal Effect Estimates. Sengewald MA; Pohl S Psychometrika; 2019 Jun; 84(2):589-610. PubMed ID: 30915587 [TBL] [Abstract][Full Text] [Related]
3. [Unbiased estimation of factorial effect by using analysis of covariance or propensity score method for observational studies in laboratory medicine]. Inada M Rinsho Byori; 2012 Jul; 60(7):689-97. PubMed ID: 22973732 [TBL] [Abstract][Full Text] [Related]
4. Prognostic score-based model averaging approach for propensity score estimation. Kabata D; Stuart EA; Shintani A BMC Med Res Methodol; 2024 Oct; 24(1):228. PubMed ID: 39363252 [TBL] [Abstract][Full Text] [Related]
5. Comparison of balancing scores using the ANCOVA approach for estimating average treatment effect: a simulation study. Tu C; Koh WY J Biopharm Stat; 2019; 29(3):508-515. PubMed ID: 30561245 [TBL] [Abstract][Full Text] [Related]
6. Propensity Score-Based Estimators With Multiple Error-Prone Covariates. Hong H; Aaby DA; Siddique J; Stuart EA Am J Epidemiol; 2019 Jan; 188(1):222-230. PubMed ID: 30358801 [TBL] [Abstract][Full Text] [Related]
7. Using analysis of covariance (ANCOVA) with fallible covariates. Culpepper SA; Aguinis H Psychol Methods; 2011 Jun; 16(2):166-78. PubMed ID: 21517178 [TBL] [Abstract][Full Text] [Related]
8. On variance estimate for covariate adjustment by propensity score analysis. Zou B; Zou F; Shuster JJ; Tighe PJ; Koch GG; Zhou H Stat Med; 2016 Sep; 35(20):3537-48. PubMed ID: 26999553 [TBL] [Abstract][Full Text] [Related]
9. The Comparison of Latent Variable Propensity Score Models to Traditional Propensity Score Models under Conditions of Covariate Unreliability. Whittaker TA Multivariate Behav Res; 2020; 55(4):625-646. PubMed ID: 31530179 [TBL] [Abstract][Full Text] [Related]
10. Comparison of the ability of double-robust estimators to correct bias in propensity score matching analysis. A Monte Carlo simulation study. Nguyen TL; Collins GS; Spence J; Devereaux PJ; Daurès JP; Landais P; Le Manach Y Pharmacoepidemiol Drug Saf; 2017 Dec; 26(12):1513-1519. PubMed ID: 28984050 [TBL] [Abstract][Full Text] [Related]
11. Two-step estimation in ratio-of-mediator-probability weighted causal mediation analysis. Bein E; Deutsch J; Hong G; Porter KE; Qin X; Yang C Stat Med; 2018 Apr; 37(8):1304-1324. PubMed ID: 29322536 [TBL] [Abstract][Full Text] [Related]
12. Accounting for Latent Covariates in Average Effects from Count Regressions. Kiefer C; Mayer A Multivariate Behav Res; 2021; 56(4):579-594. PubMed ID: 32329366 [TBL] [Abstract][Full Text] [Related]
13. Estimating effects of nursing intervention via propensity score analysis. Qin R; Titler MG; Shever LL; Kim T Nurs Res; 2008; 57(6):444-52. PubMed ID: 19018219 [TBL] [Abstract][Full Text] [Related]
14. Quantifying the bias due to observed individual confounders in causal treatment effect estimates. Parast L; Griffin BA Stat Med; 2020 Aug; 39(18):2447-2476. PubMed ID: 32388870 [TBL] [Abstract][Full Text] [Related]
16. Targeted Maximum Likelihood Estimation for Causal Inference in Observational Studies. Schuler MS; Rose S Am J Epidemiol; 2017 Jan; 185(1):65-73. PubMed ID: 27941068 [TBL] [Abstract][Full Text] [Related]
17. Assessing causal treatment effect estimation when using large observational datasets. John ER; Abrams KR; Brightling CE; Sheehan NA BMC Med Res Methodol; 2019 Nov; 19(1):207. PubMed ID: 31726969 [TBL] [Abstract][Full Text] [Related]
18. [Propensity score methods for creating covariate balance in observational studies]. Pattanayak CW; Rubin DB; Zell ER Rev Esp Cardiol; 2011 Oct; 64(10):897-903. PubMed ID: 21872981 [TBL] [Abstract][Full Text] [Related]
19. Can statistical adjustment guided by causal inference improve the accuracy of effect estimation? A simulation and empirical research based on meta-analyses of case-control studies. Yan R; Liu T; Peng Y; Peng X BMC Med Inform Decis Mak; 2020 Dec; 20(1):333. PubMed ID: 33308213 [TBL] [Abstract][Full Text] [Related]
20. Studies with many covariates and few outcomes: selecting covariates and implementing propensity-score-based confounding adjustments. Patorno E; Glynn RJ; Hernández-Díaz S; Liu J; Schneeweiss S Epidemiology; 2014 Mar; 25(2):268-78. PubMed ID: 24487209 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]