These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 30345614)

  • 1. Wettability and Applications of Nanochannels.
    Zhang X; Liu H; Jiang L
    Adv Mater; 2019 Feb; 31(5):e1804508. PubMed ID: 30345614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rational ion transport management mediated through membrane structures.
    Chen Y; Zhu Z; Tian Y; Jiang L
    Exploration (Beijing); 2021 Oct; 1(2):20210101. PubMed ID: 37323215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water transport and purification in nanochannels controlled by asymmetric wettability.
    Chen Q; Meng L; Li Q; Wang D; Guo W; Shuai Z; Jiang L
    Small; 2011 Aug; 7(15):2225-31. PubMed ID: 21608126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mixed-dimensional membranes: chemistry and structure-property relationships.
    Liu Y; Coppens MO; Jiang Z
    Chem Soc Rev; 2021 Nov; 50(21):11747-11765. PubMed ID: 34499074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. External-Field-Induced Gradient Wetting for Controllable Liquid Transport: From Movement on the Surface to Penetration into the Surface.
    Li Y; He L; Zhang X; Zhang N; Tian D
    Adv Mater; 2017 Dec; 29(45):. PubMed ID: 29052911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanochannels regulating ionic transport for boosting electrochemical energy storage and conversion: a review.
    Hao Z; Zhang Q; Xu X; Zhao Q; Wu C; Liu J; Wang H
    Nanoscale; 2020 Aug; 12(30):15923-15943. PubMed ID: 32510069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrowetting-Mediated Transport to Produce Electrochemical Transistor Action in Nanopore Electrode Arrays.
    Kwon SR; Baek S; Fu K; Bohn PW
    Small; 2020 May; 16(18):e1907249. PubMed ID: 32270930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elucidating Ultrafast Molecular Permeation through Well-Defined 2D Nanochannels of Lamellar Membranes.
    Wu X; Cui X; Wu W; Wang J; Li Y; Jiang Z
    Angew Chem Int Ed Engl; 2019 Dec; 58(51):18524-18529. PubMed ID: 31617307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wettability-modulated behavior of polymers under varying degrees of nano-confinement.
    Arya V; Chaudhuri A; Bakli C
    J Chem Phys; 2024 Feb; 160(6):. PubMed ID: 38341795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wettability and confinement size effects on stability of water conveying nanotubes.
    Shaat M; Javed U; Faroughi S
    Sci Rep; 2020 Oct; 10(1):17167. PubMed ID: 33051583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wetting transition in nanochannels for biomimetic free-blocking on-demand drug transport.
    Cheng Y; Jiao X; Zhao L; Liu Y; Wang F; Wen Y; Zhang X
    J Mater Chem B; 2018 Oct; 6(39):6269-6277. PubMed ID: 32254617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Advances in TiO2 -Based Nanostructured Surfaces with Controllable Wettability and Adhesion.
    Lai Y; Huang J; Cui Z; Ge M; Zhang KQ; Chen Z; Chi L
    Small; 2016 Apr; 12(16):2203-24. PubMed ID: 26695122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wetting in hydrophobic nanochannels: a challenge of classical capillarity.
    Helmy R; Kazakevich Y; Ni C; Fadeev AY
    J Am Chem Soc; 2005 Sep; 127(36):12446-7. PubMed ID: 16144365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tailoring CO
    Cheng SQ; Liu XQ; Han ZL; Rong Y; Qin SY; Sun Y; Li H
    ACS Appl Mater Interfaces; 2021 Jun; 13(23):27255-27261. PubMed ID: 34029047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring Anomalous Fluid Behavior at the Nanoscale: Direct Visualization and Quantification via Nanofluidic Devices.
    Zhong J; Alibakhshi MA; Xie Q; Riordon J; Xu Y; Duan C; Sinton D
    Acc Chem Res; 2020 Feb; 53(2):347-357. PubMed ID: 31922716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics study of the influence of wall-gas interactions on heat flow in nanochannels.
    Markvoort AJ; Hilbers PA; Nedea SV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 2):066702. PubMed ID: 16089906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Smart surfaces with reversibly switchable wettability: Concepts, synthesis and applications.
    Liu H; Zhang L; Huang J; Mao J; Chen Z; Mao Q; Ge M; Lai Y
    Adv Colloid Interface Sci; 2022 Feb; 300():102584. PubMed ID: 34973464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport, phase transitions, and wetting in micro/nanochannels: a phase field/DDFT approach.
    Mickel W; Joly L; Biben T
    J Chem Phys; 2011 Mar; 134(9):094105. PubMed ID: 21384948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular insights on confined water in the nanochannels of self-assembled ionic liquid crystal.
    Ishii Y; Matubayasi N; Watanabe G; Kato T; Washizu H
    Sci Adv; 2021 Jul; 7(31):. PubMed ID: 34321196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Efficient Gating of Electrically Actuated Nanochannels for Pulsatile Drug Delivery Stemming from a Reversible Wettability Switch.
    Zhang Q; Kang J; Xie Z; Diao X; Liu Z; Zhai J
    Adv Mater; 2018 Jan; 30(4):. PubMed ID: 29215141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.