These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 30345614)

  • 21. Ionic Transport and Robust Switching Properties of the Confined Self-Assembled Block Copolymer/Homopolymer in Asymmetric Nanochannels.
    Wang J; Liu L; Yan G; Li Y; Gao Y; Tian Y; Jiang L
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14507-14517. PubMed ID: 33733727
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Roles of energy dissipation and asymmetric wettability in spontaneous imbibition dynamics in a nanochannel.
    A H; Yang Z; Hu R; Chen YF
    J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1023-1035. PubMed ID: 34571292
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Light- and Electric-Field-Controlled Wetting Behavior in Nanochannels for Regulating Nanoconfined Mass Transport.
    Xie G; Li P; Zhao Z; Zhu Z; Kong XY; Zhang Z; Xiao K; Wen L; Jiang L
    J Am Chem Soc; 2018 Apr; 140(13):4552-4559. PubMed ID: 29540056
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of surface wettability and liquid viscosity on the dynamic wetting of individual drops.
    Chen L; Bonaccurso E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022401. PubMed ID: 25215736
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular insights on confined water in the nanochannels of self-assembled ionic liquid crystal.
    Ishii Y; Matubayasi N; Watanabe G; Kato T; Washizu H
    Sci Adv; 2021 Jul; 7(31):. PubMed ID: 34321196
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Heterogeneous Viscosity Flow Model for Liquid Transport through Nanopores Considering Pore Size and Wettability.
    Chang Y; Zhang Y; Niu Z; Chen X; Du M; Yang Z
    Molecules; 2024 Jul; 29(13):. PubMed ID: 38999127
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two-dimensional nanochannel membranes for molecular and ionic separations.
    Wang S; Yang L; He G; Shi B; Li Y; Wu H; Zhang R; Nunes S; Jiang Z
    Chem Soc Rev; 2020 Feb; 49(4):1071-1089. PubMed ID: 31971530
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anomalous capillary filling and wettability reversal in nanochannels.
    Gravelle S; Ybert C; Bocquet L; Joly L
    Phys Rev E; 2016 Mar; 93(3):033123. PubMed ID: 27078463
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanopumps without Pressure Gradients: Ultrafast Transport of Water in Patterned Nanotubes.
    Papadopoulou E; Megaridis CM; Walther JH; Koumoutsakos P
    J Phys Chem B; 2022 Jan; 126(3):660-669. PubMed ID: 35081713
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication of nanofluidic biochips with nanochannels for applications in DNA analysis.
    Xia D; Yan J; Hou S
    Small; 2012 Sep; 8(18):2787-801. PubMed ID: 22778064
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Outer-Surface Functionalized Solid-State Nanochannels for Enhanced Sensing Properties: Progress and Perspective.
    Dai L; Zhang WQ; Ding D; Luo C; Jiang L; Huang Y; Xia F
    ACS Nano; 2024 Mar; 18(11):7677-7687. PubMed ID: 38450654
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Solid-liquid-liquid wettability and its prediction with surface free energy models.
    Stammitti-Scarpone A; Acosta EJ
    Adv Colloid Interface Sci; 2019 Feb; 264():28-46. PubMed ID: 30396508
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stimuli-Responsive Ion Transport Regulation in Nanochannels by Adhesion-Induced Functionalization of Macroscopic Outer Surface.
    Jiang Y; Wang R; Ye C; Wang X; Wang D; Du Q; Liang H; Zhang S; Gao P
    ACS Appl Mater Interfaces; 2024 Jul; 16(27):35666-35674. PubMed ID: 38924711
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydrodynamic slip in silicon nanochannels.
    Ramos-Alvarado B; Kumar S; Peterson GP
    Phys Rev E; 2016 Mar; 93(3):033117. PubMed ID: 27078457
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioinspired patterning with extreme wettability contrast on TiO2 nanotube array surface: a versatile platform for biomedical applications.
    Lai Y; Lin L; Pan F; Huang J; Song R; Huang Y; Lin C; Fuchs H; Chi L
    Small; 2013 Sep; 9(17):2945-53. PubMed ID: 23420792
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ion/Molecule Transportation in Nanopores and Nanochannels: From Critical Principles to Diverse Functions.
    Zhu Z; Wang D; Tian Y; Jiang L
    J Am Chem Soc; 2019 Jun; 141(22):8658-8669. PubMed ID: 31063693
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anisotropic wetting surfaces with one-dimensional and directional structures: fabrication approaches, wetting properties and potential applications.
    Xia D; Johnson LM; López GP
    Adv Mater; 2012 Mar; 24(10):1287-302. PubMed ID: 22318857
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct Prediction of Calcite Surface Wettability with First-Principles Quantum Simulation.
    Lu JY; Ge Q; Li H; Raza A; Zhang T
    J Phys Chem Lett; 2017 Nov; 8(21):5309-5316. PubMed ID: 28985077
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Confined Water Dominates Ion/Molecule Transport in Hydrogel Nanochannels.
    Li P; Yang X; Chen F; Wang D; Hao D; Xu Z; Qiu M; He S; Xia F; Tian Y
    Nano Lett; 2024 Jan; 24(3):897-904. PubMed ID: 38193898
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wettability of graphene: from influencing factors and reversible conversions to potential applications.
    Feng J; Guo Z
    Nanoscale Horiz; 2019 Mar; 4(2):339-364. PubMed ID: 32254088
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.