These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 30345614)

  • 41. Experimental Investigation of the Role of DC Voltage in the Wettability Alteration in Tight Sandstones.
    Zhang W; Ning Z; Cheng Z; Wang Q; Wu X; Huang L
    Langmuir; 2020 Oct; 36(40):11985-11995. PubMed ID: 32957786
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Light-Switching Surface Wettability of Chiral Liquid Crystal Networks by Dynamic Change in Nanoscale Topography.
    Zhang YS; Wang ZQ; Lin JD; Yang PC; Lee CR
    Macromol Rapid Commun; 2022 Mar; 43(5):e2100736. PubMed ID: 34837422
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bioinspired Special Wettability Surfaces: From Fundamental Research to Water Harvesting Applications.
    Zhang S; Huang J; Chen Z; Lai Y
    Small; 2017 Jan; 13(3):. PubMed ID: 27935211
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Gold nanochannels oxidation by confined water.
    Batista AM; de Queiroz TB; Antunes RA; Lanfredi AJC; Benvenho ARV; Bonvent JJ; Martinho H
    RSC Adv; 2020 Oct; 10(61):36980-36987. PubMed ID: 35521283
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of the Interfacial Modeling Approach on Equilibrium Calculations of Slip Length for Nanoconfined Water in Carbon Slits.
    Paniagua-Guerra LE; Gonzalez-Valle CU; Ramos-Alvarado B
    Langmuir; 2020 Dec; 36(48):14772-14781. PubMed ID: 33215929
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Superwettability-Based Interfacial Chemical Reactions.
    Wu Y; Feng J; Gao H; Feng X; Jiang L
    Adv Mater; 2019 Feb; 31(8):e1800718. PubMed ID: 30592333
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Confinement effects on monosaccharide transport in nanochannels.
    Ziemys A; Grattoni A; Fine D; Hussain F; Ferrari M
    J Phys Chem B; 2010 Sep; 114(34):11117-26. PubMed ID: 20738139
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Atomistic simulations of electrowetting in carbon nanotubes.
    Kutana A; Giapis KP
    Nano Lett; 2006 Apr; 6(4):656-61. PubMed ID: 16608260
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The impact of additives found in industrial formulations of TCE on the wettability of sandstone.
    Harrold G; Lerner DN; Leharne SA
    J Contam Hydrol; 2005 Nov; 80(1-2):1-17. PubMed ID: 16099534
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nanoarchitectonics for Electrospun Membranes with Asymmetric Wettability.
    Chen J; Low ZX; Feng S; Zhong Z; Xing W; Wang H
    ACS Appl Mater Interfaces; 2021 Dec; 13(51):60763-60788. PubMed ID: 34913668
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Wetting of porous solids.
    Patkar S; Chaudhuri P
    IEEE Trans Vis Comput Graph; 2013 Sep; 19(9):1592-604. PubMed ID: 23846102
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Experimental determination of the diameter-dependent wettability of carbon nanotubes as studied using atomic force microscopy.
    Imadate K; Hirahara K
    Phys Chem Chem Phys; 2018 Oct; 20(42):26979-26985. PubMed ID: 30328447
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mesoscopic method to study water flow in nanochannels with different wettability.
    Zhang T; Javadpour F; Li X; Wu K; Li J; Yin Y
    Phys Rev E; 2020 Jul; 102(1-1):013306. PubMed ID: 32794987
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The polymer physics of single DNA confined in nanochannels.
    Dai L; Renner CB; Doyle PS
    Adv Colloid Interface Sci; 2016 Jun; 232():80-100. PubMed ID: 26782150
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Insights into the interplay of wetting and transport in mesoporous silica films.
    Khalil A; Zimmermann M; Bell AK; Kunz U; Hardt S; Kleebe HJ; Stark RW; Stephan P; Andrieu-Brunsen A
    J Colloid Interface Sci; 2020 Feb; 560():369-378. PubMed ID: 31635882
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nonstraight nanochannels transfer water faster than straight nanochannels.
    Qiu T; Meng XW; Huang JP
    J Phys Chem B; 2015 Jan; 119(4):1496-502. PubMed ID: 25562647
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Wetting and anti-wetting on aligned carbon nanotube films.
    Liu H; Zhai J; Jiang L
    Soft Matter; 2006 Sep; 2(10):811-821. PubMed ID: 32680273
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bioinspired Dynamic Wetting on Multiple Fibers.
    Wang P; Bian R; Meng Q; Liu H; Jiang L
    Adv Mater; 2017 Dec; 29(45):. PubMed ID: 29024229
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Separation Mechanism and Construction of Surfaces with Special Wettability for Oil/Water Separation.
    Chen C; Weng D; Mahmood A; Chen S; Wang J
    ACS Appl Mater Interfaces; 2019 Mar; 11(11):11006-11027. PubMed ID: 30811172
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Predicting the wetting dynamics of a two-liquid system.
    Seveno D; Blake TD; Goossens S; De Coninck J
    Langmuir; 2011 Dec; 27(24):14958-67. PubMed ID: 22040276
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.