These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 3034579)

  • 1. Effect of heat shock on protein degradation in mammalian cells: involvement of the ubiquitin system.
    Parag HA; Raboy B; Kulka RG
    EMBO J; 1987 Jan; 6(1):55-61. PubMed ID: 3034579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mammalian cell cycle mutant defective in intracellular protein degradation and ubiquitin-protein conjugation.
    Ciechanover A; Finley D; Varshavsky A
    Prog Clin Biol Res; 1985; 180():17-31. PubMed ID: 2994083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microinjection of ubiquitin: changes in protein degradation in HeLa cells subjected to heat-shock.
    Carlson N; Rogers S; Rechsteiner M
    J Cell Biol; 1987 Mar; 104(3):547-55. PubMed ID: 3029142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ubiquitin-activating enzyme, E1, is required for stress-induced lysosomal degradation of cellular proteins.
    Gropper R; Brandt RA; Elias S; Bearer CF; Mayer A; Schwartz AL; Ciechanover A
    J Biol Chem; 1991 Feb; 266(6):3602-10. PubMed ID: 1847380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification, characterization, and rapid inactivation of thermolabile ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85.
    Mayer A; Gropper R; Schwartz AL; Ciechanover A
    J Biol Chem; 1989 Feb; 264(4):2060-8. PubMed ID: 2914892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defect in the development of thermotolerance and enhanced heat shock protein synthesis in the mouse temperature-sensitive mutant ts85 cells upon moderate hyperthermia.
    Mizuno S; Ohkawara A; Suzuki K
    Int J Hyperthermia; 1989; 5(1):105-13. PubMed ID: 2537871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ubiquitin dependence of selective protein degradation demonstrated in the mammalian cell cycle mutant ts85.
    Ciechanover A; Finley D; Varshavsky A
    Cell; 1984 May; 37(1):57-66. PubMed ID: 6327060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ubiquitin metabolism in ts85 cells, a mouse carcinoma line that contains a thermolabile ubiquitin activating enzyme.
    Deveraux Q; Wells R; Rechsteiner M
    J Biol Chem; 1990 Apr; 265(11):6323-9. PubMed ID: 2156848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defect in the development of thermotolerance in the mouse temperature-sensitive mutant ts85 lacking ubiquitin-activating enzyme.
    Mizuno S; Ohkawara A; Suzuki K
    Jpn J Cancer Res; 1988 Jan; 79(1):17-20. PubMed ID: 2833480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of DNA synthesis at a restrictive temperature in the temperature-sensitive mutants, tsFT5 cells, that belong to the complementation group of ts85 cells containing a thermolabile ubiquitin-activating enzyme E1. Involvement of the ubiquitin-conjugating system in DNA replication.
    Mori M; Eki T; Takahashi-Kudo M; Hanaoka F; Ui M; Enomoto T
    J Biol Chem; 1993 Aug; 268(22):16803-9. PubMed ID: 8344958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conjugation of [125I]ubiquitin to cellular proteins in permeabilized mammalian cells: comparison of mitotic and interphase cells.
    Raboy B; Parag HA; Kulka RG
    EMBO J; 1986 May; 5(5):863-9. PubMed ID: 3013620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85.
    Finley D; Ciechanover A; Varshavsky A
    Cell; 1984 May; 37(1):43-55. PubMed ID: 6327059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Possible involvement of ubiquitin function and ATP requirement in the development of thermotolerance in mammalian cells.
    Mizuno S; Ohkawara A; Suzuki K; Yamakawa Y
    Int J Hyperthermia; 1990; 6(1):33-46. PubMed ID: 2153743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Chinese hamster cell cycle mutant arrested at G2 phase has a temperature-sensitive ubiquitin-activating enzyme, E1.
    Kulka RG; Raboy B; Schuster R; Parag HA; Diamond G; Ciechanover A; Marcus M
    J Biol Chem; 1988 Oct; 263(30):15726-31. PubMed ID: 3049611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of stress on protein degradation: role of the ubiquitin system.
    Raboy B; Sharon G; Parag HA; Shochat Y; Kulka RG
    Acta Biol Hung; 1991; 42(1-3):3-20. PubMed ID: 1668897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impaired induction of heat shock protein implicated in decreased thermotolerance in a temperature-sensitive multinucleated cell line.
    Cao Y; Matsumoto T; Motomura K; Ohtsuru A; Yamashita S; Kosaka M
    Pflugers Arch; 1998 Dec; 437(1):15-20. PubMed ID: 9817780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of ubiquitin conjugation during heat-shock response revealed by using a monoclonal antibody specific to multi-ubiquitin chains.
    Fujimuro M; Sawada H; Yokosawa H
    Eur J Biochem; 1997 Oct; 249(2):427-33. PubMed ID: 9370350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of culture temperature on the expression of heat-shock proteins in murine ts85 cells.
    Hatayama T; Tsujioka K; Wakatsuki T; Kitamura T; Imahara H
    Biochim Biophys Acta; 1992 Jun; 1135(3):253-61. PubMed ID: 1623011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ubiquitin-activating enzyme is required for lysosomal degradation of cellular proteins under stress.
    Ciechanover A; Gropper R; Schwartz AL
    Biomed Biochim Acta; 1991; 50(4-6):321-32. PubMed ID: 1801698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature-dependency of the expression of heat shock proteins in rat hepatoma cells with a different degree of heat sensitivity.
    Van Wijk R; Van Aken H; Schamhart DH
    Int J Hyperthermia; 1993; 9(1):137-50. PubMed ID: 8433023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.