These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
531 related articles for article (PubMed ID: 30346108)
21. Climate-driven local adaptation of ecophysiology and phenology in balsam poplar, Populus balsamifera L. (Salicaceae). Keller SR; Soolanayakanahally RY; Guy RD; Silim SN; Olson MS; Tiffin P Am J Bot; 2011 Jan; 98(1):99-108. PubMed ID: 21613088 [TBL] [Abstract][Full Text] [Related]
22. Photoperiod cues and patterns of genetic variation limit phenological responses to climate change in warm parts of species' range: Modeling diameter-growth cessation in coast Douglas-fir. Ford KR; Harrington CA; St Clair JB Glob Chang Biol; 2017 Aug; 23(8):3348-3362. PubMed ID: 28303652 [TBL] [Abstract][Full Text] [Related]
23. Lower plasticity exhibited by high- versus mid-elevation species in their phenological responses to manipulated temperature and drought. Gugger S; Kesselring H; Stöcklin J; Hamann E Ann Bot; 2015 Nov; 116(6):953-62. PubMed ID: 26424784 [TBL] [Abstract][Full Text] [Related]
24. Geographical and environmental gradients shape phenotypic trait variation and genetic structure in Populus trichocarpa. McKown AD; Guy RD; Klápště J; Geraldes A; Friedmann M; Cronk QCB; El-Kassaby YA; Mansfield SD; Douglas CJ New Phytol; 2014 Mar; 201(4):1263-1276. PubMed ID: 24491114 [TBL] [Abstract][Full Text] [Related]
25. The joint influence of photoperiod and temperature during growth cessation and development of dormancy in white spruce (Picea glauca). Hamilton JA; El Kayal W; Hart AT; Runcie DE; Arango-Velez A; Cooke JE Tree Physiol; 2016 Nov; 36(11):1432-1448. PubMed ID: 27449791 [TBL] [Abstract][Full Text] [Related]
26. Genetic basis of aboveground productivity in two native Populus species and their hybrids. Lojewski NR; Fischer DG; Bailey JK; Schweitzer JA; Whitham TG; Hart SC Tree Physiol; 2009 Sep; 29(9):1133-42. PubMed ID: 19578030 [TBL] [Abstract][Full Text] [Related]
27. Two are better than one: combining landscape genomics and common gardens for detecting local adaptation in forest trees. Lepais O; Bacles CF Mol Ecol; 2014 Oct; 23(19):4671-3. PubMed ID: 25263401 [TBL] [Abstract][Full Text] [Related]
28. Genotypic variation and plasticity in climate-adaptive traits after range expansion and fragmentation of red spruce ( Prakash A; DeYoung S; Lachmuth S; Adams JL; Johnsen K; Butnor JR; Nelson DM; Fitzpatrick MC; Keller SR Philos Trans R Soc Lond B Biol Sci; 2022 Apr; 377(1848):20210008. PubMed ID: 35184589 [TBL] [Abstract][Full Text] [Related]
29. Adaptive variation and plasticity in non-structural carbohydrate storage in a temperate tree species. Blumstein M; Hopkins R Plant Cell Environ; 2021 Aug; 44(8):2494-2505. PubMed ID: 33244757 [TBL] [Abstract][Full Text] [Related]
30. Range margin populations show high climate adaptation lags in European trees. Fréjaville T; Vizcaíno-Palomar N; Fady B; Kremer A; Benito Garzón M Glob Chang Biol; 2020 Feb; 26(2):484-495. PubMed ID: 31642570 [TBL] [Abstract][Full Text] [Related]
31. Temperature signals contribute to the timing of photoperiodic growth cessation and bud set in poplar. Rohde A; Bastien C; Boerjan W Tree Physiol; 2011 May; 31(5):472-82. PubMed ID: 21636689 [TBL] [Abstract][Full Text] [Related]
32. Modeling the effect of adaptation to future climate change on spring phenological trend of European beech (Fagus sylvatica L.). Wang H; Lin S; Dai J; Ge Q Sci Total Environ; 2022 Nov; 846():157540. PubMed ID: 35878847 [TBL] [Abstract][Full Text] [Related]
33. Shifts in the temperature-sensitive periods for spring phenology in European beech and pedunculate oak clones across latitudes and over recent decades. Wenden B; Mariadassou M; Chmielewski FM; Vitasse Y Glob Chang Biol; 2020 Mar; 26(3):1808-1819. PubMed ID: 31724292 [TBL] [Abstract][Full Text] [Related]
34. Phenological plasticity will not help all species adapt to climate change. Duputié A; Rutschmann A; Ronce O; Chuine I Glob Chang Biol; 2015 Aug; 21(8):3062-73. PubMed ID: 25752508 [TBL] [Abstract][Full Text] [Related]
35. Antagonistic Responses of Exposure to Sublethal Temperatures: Adaptive Phenotypic Plasticity Coincides with a Reduction in Organismal Performance. Gilbert AL; Miles DB Am Nat; 2019 Sep; 194(3):344-355. PubMed ID: 31553209 [TBL] [Abstract][Full Text] [Related]
36. Does climate-related in situ variability of Scots pine (Pinus sylvestris L.) needles have a genetic basis? Evidence from common garden experiments. Jankowski A; Wyka TP; Żytkowiak R; Danusevičius D; Oleksyn J Tree Physiol; 2019 Apr; 39(4):573-589. PubMed ID: 30715504 [TBL] [Abstract][Full Text] [Related]
37. Wood structural differences between northern and southern beech provenances growing at a moderate site. Eilmann B; Sterck F; Wegner L; de Vries SM; von Arx G; Mohren GM; den Ouden J; Sass-Klaassen U Tree Physiol; 2014 Aug; 34(8):882-93. PubMed ID: 25163729 [TBL] [Abstract][Full Text] [Related]
38. Vernal freeze damage and genetic variation alter tree growth, chemistry, and insect interactions. Rubert-Nason KF; Couture JJ; Gryzmala EA; Townsend PA; Lindroth RL Plant Cell Environ; 2017 Nov; 40(11):2743-2753. PubMed ID: 28755489 [TBL] [Abstract][Full Text] [Related]
39. Variability in DNA Methylation and Generational Plasticity in the Lombardy Poplar, a Single Genotype Worldwide Distributed Since the Eighteenth Century. Vanden Broeck A; Cox K; Brys R; Castiglione S; Cicatelli A; Guarino F; Heinze B; Steenackers M; Vander Mijnsbrugge K Front Plant Sci; 2018; 9():1635. PubMed ID: 30483290 [TBL] [Abstract][Full Text] [Related]
40. Cold adaptation recorded in tree rings highlights risks associated with climate change and assisted migration. Montwé D; Isaac-Renton M; Hamann A; Spiecker H Nat Commun; 2018 Apr; 9(1):1574. PubMed ID: 29686289 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]