These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 30346110)
1. Triple Function of 4-Mercaptophenylacetic Acid Promotes One-Pot Multiple Peptide Ligation. Kamo N; Hayashi G; Okamoto A Angew Chem Int Ed Engl; 2018 Dec; 57(50):16533-16537. PubMed ID: 30346110 [TBL] [Abstract][Full Text] [Related]
2. Chemical Synthesis of Cys-Containing Protein via Chemoselective Deprotection with Different Palladium Complexes. Kamo N; Hayashi G; Okamoto A Org Lett; 2019 Oct; 21(20):8378-8382. PubMed ID: 31560553 [TBL] [Abstract][Full Text] [Related]
3. Efficient Palladium-Assisted One-Pot Deprotection of (Acetamidomethyl)Cysteine Following Native Chemical Ligation and/or Desulfurization To Expedite Chemical Protein Synthesis. Maity SK; Jbara M; Laps S; Brik A Angew Chem Int Ed Engl; 2016 Jul; 55(28):8108-12. PubMed ID: 27126503 [TBL] [Abstract][Full Text] [Related]
4. Total chemical synthesis of histones and their analogs, assisted by native chemical ligation and palladium complexes. Maity SK; Jbara M; Mann G; Kamnesky G; Brik A Nat Protoc; 2017 Nov; 12(11):2293-2322. PubMed ID: 28981125 [TBL] [Abstract][Full Text] [Related]
5. Repetitive Thiazolidine Deprotection Using a Thioester-Compatible Aldehyde Scavenger for One-Pot Multiple Peptide Ligation. Nakatsu K; Okamoto A; Hayashi G; Murakami H Angew Chem Int Ed Engl; 2022 Sep; 61(39):e202206240. PubMed ID: 35881031 [TBL] [Abstract][Full Text] [Related]
6. Palladium Mediated Rapid Deprotection of N-Terminal Cysteine under Native Chemical Ligation Conditions for the Efficient Preparation of Synthetically Challenging Proteins. Jbara M; Maity SK; Seenaiah M; Brik A J Am Chem Soc; 2016 Apr; 138(15):5069-75. PubMed ID: 27023072 [TBL] [Abstract][Full Text] [Related]
7. Palladium-Assisted Removal of a Solubilizing Tag from a Cys Side Chain To Facilitate Peptide and Protein Synthesis. Maity SK; Mann G; Jbara M; Laps S; Kamnesky G; Brik A Org Lett; 2016 Jun; 18(12):3026-9. PubMed ID: 27268382 [TBL] [Abstract][Full Text] [Related]
8. One-pot ligation of multiple peptide segments via N-terminal thiazolidine deprotection chemistry. Nakamura G; Nakatsu K; Hayashi G Methods Enzymol; 2024; 698():169-194. PubMed ID: 38886031 [TBL] [Abstract][Full Text] [Related]
9. One-pot native chemical ligation of peptide hydrazides enables total synthesis of modified histones. Li J; Li Y; He Q; Li Y; Li H; Liu L Org Biomol Chem; 2014 Aug; 12(29):5435-41. PubMed ID: 24934931 [TBL] [Abstract][Full Text] [Related]
10. Insights into the mechanism and catalysis of the native chemical ligation reaction. Johnson EC; Kent SB J Am Chem Soc; 2006 May; 128(20):6640-6. PubMed ID: 16704265 [TBL] [Abstract][Full Text] [Related]
11. Corrigendum: Triple Function of 4-Mercaptophenylacetic Acid Promotes One-Pot Multiple Peptide Ligation. Kamo N; Hayashi G; Okamoto A Angew Chem Int Ed Engl; 2019 Feb; 58(6):1540. PubMed ID: 30694014 [No Abstract] [Full Text] [Related]
12. Efficient Chemical Protein Synthesis using Fmoc-Masked N-Terminal Cysteine in Peptide Thioester Segments. Kar A; Mannuthodikayil J; Singh S; Biswas A; Dubey P; Das A; Mandal K Angew Chem Int Ed Engl; 2020 Aug; 59(35):14796-14801. PubMed ID: 32333711 [TBL] [Abstract][Full Text] [Related]
13. Imidazole-Aided Native Chemical Ligation: Imidazole as a One-Pot Desulfurization-Amenable Non-Thiol-Type Alternative to 4-Mercaptophenylacetic Acid. Sakamoto K; Tsuda S; Mochizuki M; Nohara Y; Nishio H; Yoshiya T Chemistry; 2016 Dec; 22(50):17940-17944. PubMed ID: 27709754 [TBL] [Abstract][Full Text] [Related]
14. Towards biomolecular assembly employing extended native chemical ligation in combination with thioester synthesis using an N-->S acyl shift. Ackrill T; Anderson DW; Macmillan D Biopolymers; 2010; 94(4):495-503. PubMed ID: 20593460 [TBL] [Abstract][Full Text] [Related]
15. On-Demand Detachment of Succinimides on Cysteine to Facilitate (Semi)Synthesis of Challenging Proteins. Vamisetti GB; Satish G; Sulkshane P; Mann G; Glickman MH; Brik A J Am Chem Soc; 2020 Nov; 142(46):19558-19569. PubMed ID: 33136379 [TBL] [Abstract][Full Text] [Related]
16. Synthesis and use of a pseudo-cysteine for native chemical ligation. Alves DA; Esser D; Broadbridge RJ; Beevers AP; Chapman CP; Winsor CE; Betley JR J Pept Sci; 2003 Apr; 9(4):221-8. PubMed ID: 12725243 [TBL] [Abstract][Full Text] [Related]
17. Palladium prompted on-demand cysteine chemistry for the synthesis of challenging and uniquely modified proteins. Jbara M; Laps S; Morgan M; Kamnesky G; Mann G; Wolberger C; Brik A Nat Commun; 2018 Aug; 9(1):3154. PubMed ID: 30089783 [TBL] [Abstract][Full Text] [Related]
18. Synthesis of histone proteins by CPE ligation using a recombinant peptide as the C-terminal building block. Kawakami T; Yoshikawa R; Fujiyoshi Y; Mishima Y; Hojo H; Tajima S; Suetake I J Biochem; 2015 Nov; 158(5):403-11. PubMed ID: 26002961 [TBL] [Abstract][Full Text] [Related]
19. Enabling Peptide Ligation at Aromatic Junction Mimics via Native Chemical Ligation and Palladium-Mediated S-Arylation. Lin X; Nithun RV; Samanta R; Harel O; Jbara M Org Lett; 2023 Jun; 25(25):4715-4719. PubMed ID: 37318270 [TBL] [Abstract][Full Text] [Related]
20. Synthesis of cysteine-rich peptides by native chemical ligation without use of exogenous thiols. Tsuda S; Yoshiya T; Mochizuki M; Nishiuchi Y Org Lett; 2015 Apr; 17(7):1806-9. PubMed ID: 25789929 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]