These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 30346113)
1. Hands-on robot-assisted fracture reduction system guided by a linear guidance constraints controller using a pre-operatively planned goal pose. Kim WY; Ko SY Int J Med Robot; 2019 Apr; 15(2):e1967. PubMed ID: 30346113 [TBL] [Abstract][Full Text] [Related]
2. A visual servo-based teleoperation robot system for closed diaphyseal fracture reduction. Li C; Wang T; Hu L; Zhang L; Du H; Zhao L; Wang L; Tang P Proc Inst Mech Eng H; 2015 Sep; 229(9):629-37. PubMed ID: 26199026 [TBL] [Abstract][Full Text] [Related]
3. Robot-patient registration for optical tracker-free robotic fracture reduction surgery. Ha HG; Han G; Lee S; Nam K; Joung S; Park I; Hong J Comput Methods Programs Biomed; 2023 Jan; 228():107239. PubMed ID: 36410266 [TBL] [Abstract][Full Text] [Related]
4. Robot-assisted fracture reduction: a preliminary study in the femur shaft. Gosling T; Westphal R; Hufner T; Faulstich J; Kfuri M; Wahl F; Krettek C Med Biol Eng Comput; 2005 Jan; 43(1):115-20. PubMed ID: 15742728 [TBL] [Abstract][Full Text] [Related]
5. Minimally invasive treatment of displaced femoral shaft fractures with a teleoperated robot-assisted surgical system. Zhu Q; Liang B; Wang X; Sun X; Wang L Injury; 2017 Oct; 48(10):2253-2259. PubMed ID: 28736125 [TBL] [Abstract][Full Text] [Related]
6. Intra-operative 3D imaging system for robot-assisted fracture manipulation. Dagnino G; Georgilas I; Tarassoli P; Atkins R; Dogramadzi S Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():9-12. PubMed ID: 26736188 [TBL] [Abstract][Full Text] [Related]
7. Robot-assisted fracture reduction using three-dimensional intraoperative fracture visualization: an experimental study on human cadaver femora. Oszwald M; Westphal R; Bredow J; Calafi A; Hufner T; Wahl F; Krettek C; Gosling T J Orthop Res; 2010 Sep; 28(9):1240-4. PubMed ID: 20187167 [TBL] [Abstract][Full Text] [Related]
8. Constraint of musculoskeletal tissue and path planning of robot-assisted fracture reduction with collision avoidance. Xu H; Lei J; Hu L; Zhang L Int J Med Robot; 2022 Apr; 18(2):e2361. PubMed ID: 34969160 [TBL] [Abstract][Full Text] [Related]
9. Quantifying workspace and forces of surgical dissection during robot-assisted neurosurgery. Maddahi Y; Gan LS; Zareinia K; Lama S; Sepehri N; Sutherland GR Int J Med Robot; 2016 Sep; 12(3):528-37. PubMed ID: 26119110 [TBL] [Abstract][Full Text] [Related]
10. Control of a hybrid robotic system for computer-assisted interventions in dynamic environments. Smoljkic G; Borghesan G; Devreker A; Poorten EV; Rosa B; De Praetere H; De Schutter J; Reynaerts D; Sloten JV Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1371-83. PubMed ID: 26662203 [TBL] [Abstract][Full Text] [Related]
11. Malalignment after minimally invasive plate osteosynthesis in distal femoral fractures. Kim JW; Oh CW; Oh JK; Park IH; Kyung HS; Park KH; Yoon SD; Kim SM Injury; 2017 Mar; 48(3):751-757. PubMed ID: 28093251 [TBL] [Abstract][Full Text] [Related]
12. Human-robot-robot cooperative control using positioning robot and 1-DOF traction device for robot-assisted fracture reduction system. Kim WY; Joung S; Park H; Park JO; Ko SY Proc Inst Mech Eng H; 2022 May; 236(5):697-710. PubMed ID: 35234094 [TBL] [Abstract][Full Text] [Related]
13. Adaptive variable impedance position/force tracking control of fracture reduction robot. Zheng G; Lei J; Hu L; Zhang L Int J Med Robot; 2023 Apr; 19(2):e2469. PubMed ID: 36302164 [TBL] [Abstract][Full Text] [Related]
14. A removable hybrid robot system for long bone fracture reduction. Wang T; Li C; Hu L; Tang P; Zhang L; Du H; Luan S; Wang L; Tan Y; Peng C Biomed Mater Eng; 2014; 24(1):501-9. PubMed ID: 24211933 [TBL] [Abstract][Full Text] [Related]
15. Improving the human-robot interface for telemanipulated robotic long bone fracture reduction: Joystick device vs. haptic manipulator. Suero EM; Hartung T; Westphal R; Hawi N; Liodakis E; Citak M; Krettek C; Stuebig T Int J Med Robot; 2018 Feb; 14(1):. PubMed ID: 28948678 [TBL] [Abstract][Full Text] [Related]
16. Repeatability and reproducibility of a telemanipulated fracture reduction system. Suero EM; Westphal R; Citak M; Stueber V; Lueke U; Krettek C; Stuebig T J Robot Surg; 2018 Sep; 12(3):409-416. PubMed ID: 28889398 [TBL] [Abstract][Full Text] [Related]
17. Hill-based musculoskeletal model for a fracture reduction robot. Tan Y; Fu Z; Duan L; Cui R; Wu M; Chen J; Guo Y; Li J; Guo X; Sun H Int J Med Robot; 2021 Jun; 17(3):e2252. PubMed ID: 33689227 [TBL] [Abstract][Full Text] [Related]
18. Using the Starr Frame and Da Vinci surgery system for pelvic fracture and sacral nerve injury. Peng Y; Zhang W; Zhang G; Wang X; Zhang S; Ma X; Tang P; Zhang L J Orthop Surg Res; 2019 Jan; 14(1):29. PubMed ID: 30683121 [TBL] [Abstract][Full Text] [Related]
19. [Effects of robot-assisted minimally invasive transforaminal lumbar interbody fusion and traditional open surgery in the treatment of lumbar spondylolisthesis]. Cui GY; Tian W; He D; Xing YG; Liu B; Yuan Q; Wang YQ; Sun YQ Zhonghua Wai Ke Za Zhi; 2017 Jul; 55(7):543-548. PubMed ID: 28655085 [No Abstract] [Full Text] [Related]
20. Spatial Detection of the Shafts of Fractured Femur for Image-Guided Robotic Surgery Saeedi-Hosseiny MS; Alruwaili F; Patel AS; McMillan S; Iordachita II; Abedin-Nasab MH Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3301-3304. PubMed ID: 34891946 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]