These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 30346154)
1. The Nuclearity of the Active Site for Methane to Methanol Conversion in Cu-Mordenite: A Quantitative Assessment. Pappas DK; Martini A; Dyballa M; Kvande K; Teketel S; Lomachenko KA; Baran R; Glatzel P; Arstad B; Berlier G; Lamberti C; Bordiga S; Olsbye U; Svelle S; Beato P; Borfecchia E J Am Chem Soc; 2018 Nov; 140(45):15270-15278. PubMed ID: 30346154 [TBL] [Abstract][Full Text] [Related]
2. EXAFS wavelet transform analysis of Cu-MOR zeolites for the direct methane to methanol conversion. Martini A; Signorile M; Negri C; Kvande K; Lomachenko KA; Svelle S; Beato P; Berlier G; Borfecchia E; Bordiga S Phys Chem Chem Phys; 2020 Sep; 22(34):18950-18963. PubMed ID: 32578608 [TBL] [Abstract][Full Text] [Related]
3. Tuning Copper Active Site Composition in Cu-MOR through Co-Cation Modification for Methane Activation. Plessers D; Heyer AJ; Rhoda HM; Bols ML; Solomon EI; Schoonheydt RA; Sels BF ACS Catal; 2023 Feb; 13(3):1906-1915. PubMed ID: 37377676 [TBL] [Abstract][Full Text] [Related]
4. Methane to acetic acid over Cu-exchanged zeolites: mechanistic insights from a site-specific carbonylation reaction. Narsimhan K; Michaelis VK; Mathies G; Gunther WR; Griffin RG; Román-Leshkov Y J Am Chem Soc; 2015 Feb; 137(5):1825-32. PubMed ID: 25562431 [TBL] [Abstract][Full Text] [Related]
5. Importance of Methane Chemical Potential for Its Conversion to Methanol on Cu-Exchanged Mordenite. Zheng J; Lee I; Khramenkova E; Wang M; Peng B; Gutiérrez OY; Fulton JL; Camaioni DM; Khare R; Jentys A; Haller GL; Pidko EA; Sanchez-Sanchez M; Lercher JA Chemistry; 2020 Jun; 26(34):7563-7567. PubMed ID: 32092206 [TBL] [Abstract][Full Text] [Related]
6. Methane Activation by a Mononuclear Copper Active Site in the Zeolite Mordenite: Effect of Metal Nuclearity on Reactivity. Heyer AJ; Plessers D; Braun A; Rhoda HM; Bols ML; Hedman B; Hodgson KO; Schoonheydt RA; Sels BF; Solomon EI J Am Chem Soc; 2022 Oct; 144(42):19305-19316. PubMed ID: 36219763 [TBL] [Abstract][Full Text] [Related]
7. Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol. Grundner S; Markovits MA; Li G; Tromp M; Pidko EA; Hensen EJ; Jentys A; Sanchez-Sanchez M; Lercher JA Nat Commun; 2015 Jun; 6():7546. PubMed ID: 26109507 [TBL] [Abstract][Full Text] [Related]
8. Recent Insights into Cu-Based Catalytic Sites for the Direct Conversion of Methane to Methanol. Mao M; Liu L; Liu Z Molecules; 2022 Oct; 27(21):. PubMed ID: 36363972 [TBL] [Abstract][Full Text] [Related]
9. Catalytic conversion of methane to methanol using Cu-zeolites. Alayon EM; Nachtegaal M; Ranocchiari M; van Bokhoven JA Chimia (Aarau); 2012; 66(9):668-74. PubMed ID: 23211724 [TBL] [Abstract][Full Text] [Related]
10. Assessing the Productivity of the Direct Conversion of Methane-to-Methanol over Copper-Exchanged Zeolite Omega (MAZ) via Oxygen Looping. Wieser J; Knorpp AJ; Stoian DC; Rzepka P; Newton MA; van Bokhoven JA Angew Chem Int Ed Engl; 2023 Oct; 62(40):e202305140. PubMed ID: 37314832 [TBL] [Abstract][Full Text] [Related]
11. Thermodynamics of Water-Cationic Species-Framework Guest-Host Interactions within Transition Metal Ion-Exchanged Mordenite Relevant to Selective Anaerobic Oxidation of Methane to Methanol. Zhang X; Cockreham CB; Huang Z; Sun H; Yang C; Marin-Flores OG; Wang B; Guo X; Ha S; Xu H; Wu D J Phys Chem Lett; 2020 Jun; 11(12):4774-4784. PubMed ID: 32452684 [TBL] [Abstract][Full Text] [Related]
12. Continuous Partial Oxidation of Methane to Methanol Catalyzed by Diffusion-Paired Copper Dimers in Copper-Exchanged Zeolites. Dinh KT; Sullivan MM; Narsimhan K; Serna P; Meyer RJ; Dincă M; Román-Leshkov Y J Am Chem Soc; 2019 Jul; 141(29):11641-11650. PubMed ID: 31306002 [TBL] [Abstract][Full Text] [Related]
13. DFT Analysis of Methane C-H Activation and Over-Oxidation by [Cu Panthi D; Adeyiga O; Odoh SO Chemphyschem; 2021 Dec; 22(24):2517-2525. PubMed ID: 34519406 [TBL] [Abstract][Full Text] [Related]
14. Synthesis of single-site copper catalysts for methane partial oxidation. Grundner S; Luo W; Sanchez-Sanchez M; Lercher JA Chem Commun (Camb); 2016 Feb; 52(12):2553-6. PubMed ID: 26744744 [TBL] [Abstract][Full Text] [Related]
15. Methane Over-Oxidation by Extra-Framework Copper-Oxo Active Sites of Copper-Exchanged Zeolites: Crucial Role of Traps for the Separated Methyl Group. Adeyiga O; Odoh SO Chemphyschem; 2021 Jun; 22(11):1101-1109. PubMed ID: 33786957 [TBL] [Abstract][Full Text] [Related]
16. Dioxygen Activation on Cu-MOR Zeolite: Theoretical Insights into the Formation of Cu Mahyuddin MH; Tanaka T; Staykov A; Shiota Y; Yoshizawa K Inorg Chem; 2018 Aug; 57(16):10146-10152. PubMed ID: 30091906 [TBL] [Abstract][Full Text] [Related]
17. Copper-exchanged large-port and small-port mordenite (MOR) for methane-to-methanol conversion. Knorpp AJ; Pinar AB; Newton MA; Li T; Calbry-Muzyka A; van Bokhoven JA RSC Adv; 2021 Sep; 11(49):31058-31061. PubMed ID: 35498933 [TBL] [Abstract][Full Text] [Related]
18. Competition between Mononuclear and Binuclear Copper Sites across Different Zeolite Topologies. Wijerathne A; Sawyer A; Daya R; Paolucci C JACS Au; 2024 Jan; 4(1):197-215. PubMed ID: 38274255 [TBL] [Abstract][Full Text] [Related]
19. Recent Progress in Direct Conversion of Methane to Methanol Over Copper-Exchanged Zeolites. Park MB; Park ED; Ahn WS Front Chem; 2019; 7():514. PubMed ID: 31380355 [TBL] [Abstract][Full Text] [Related]
20. Methane Oxidation over Cu Fischer JWA; Brenig A; Klose D; van Bokhoven JA; Sushkevich VL; Jeschke G Angew Chem Int Ed Engl; 2023 Aug; 62(34):e202303574. PubMed ID: 37292054 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]