These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 30346154)

  • 81. Selective Methane Oxidation to Methanol on Cu-Oxo Dimers Stabilized by Zirconia Nodes of an NU-1000 Metal-Organic Framework.
    Zheng J; Ye J; Ortuño MA; Fulton JL; Gutiérrez OY; Camaioni DM; Motkuri RK; Li Z; Webber TE; Mehdi BL; Browning ND; Penn RL; Farha OK; Hupp JT; Truhlar DG; Cramer CJ; Lercher JA
    J Am Chem Soc; 2019 Jun; 141(23):9292-9304. PubMed ID: 31117650
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Role of tyrosine residue in methane activation at the dicopper site of particulate methane monooxygenase: a density functional theory study.
    Shiota Y; Juhász G; Yoshizawa K
    Inorg Chem; 2013 Jul; 52(14):7907-17. PubMed ID: 23808646
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Selective anaerobic oxidation of methane enables direct synthesis of methanol.
    Sushkevich VL; Palagin D; Ranocchiari M; van Bokhoven JA
    Science; 2017 May; 356(6337):523-527. PubMed ID: 28473586
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems.
    Stacchiola DJ
    Acc Chem Res; 2015 Jul; 48(7):2151-8. PubMed ID: 26103058
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Selective Oxidation of Methane to Methanol over Au/H-MOR.
    Wang W; Zhou W; Tang Y; Cao W; Docherty SR; Wu F; Cheng K; Zhang Q; Copéret C; Wang Y
    J Am Chem Soc; 2023 Jun; 145(23):12928-12934. PubMed ID: 37267262
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Importance of Methane Chemical Potential for Its Conversion to Methanol on Cu-exchanged Mordenite.
    Zheng J; Lee I; Khramenkova E; Wang M; Peng B; Gutiérrez OY; Fulton JL; Camaioni DM; Khare R; Jentys A; Haller GL; Pidko EA; Sanchez-Sanchez M; Lercher JA
    Chemistry; 2020 Jun; 26(34):7515. PubMed ID: 32452593
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Removal of free fatty acid in waste frying oil by esterification with methanol on zeolite catalysts.
    Chung KH; Chang DR; Park BG
    Bioresour Technol; 2008 Nov; 99(16):7438-43. PubMed ID: 18387298
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Quantification of zinc atoms in a surface alloy on copper in an industrial-type methanol synthesis catalyst.
    Kuld S; Conradsen C; Moses PG; Chorkendorff I; Sehested J
    Angew Chem Int Ed Engl; 2014 Jun; 53(23):5941-5. PubMed ID: 24764288
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Understanding the effect of spatially separated Cu and acid sites in zeolite catalysts on oxidation of methane.
    Xiao P; Wang Y; Wang L; Toyoda H; Nakamura K; Bekhti S; Lu Y; Huang J; Gies H; Yokoi T
    Nat Commun; 2024 Mar; 15(1):2718. PubMed ID: 38548724
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Comparative performance of Cu-zeolites in the isothermal conversion of methane to methanol.
    Knorpp AJ; Newton MA; Mizuno SCM; Zhu J; Mebrate H; Pinar AB; van Bokhoven JA
    Chem Commun (Camb); 2019 Oct; 55(78):11794-11797. PubMed ID: 31524890
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Direct Conversion of Syngas into Methyl Acetate, Ethanol, and Ethylene by Relay Catalysis via the Intermediate Dimethyl Ether.
    Zhou W; Kang J; Cheng K; He S; Shi J; Zhou C; Zhang Q; Chen J; Peng L; Chen M; Wang Y
    Angew Chem Int Ed Engl; 2018 Sep; 57(37):12012-12016. PubMed ID: 30063282
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Further evidence for the existence of a dual-Cu+ site in MFI working as the efficient site for C2H6 adsorption at room temperature.
    Itadani A; Sogawa Y; Oda A; Torigoe H; Ohkubo T; Kuroda Y
    Langmuir; 2013 Aug; 29(31):9727-33. PubMed ID: 23845166
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Effect of a tridentate ligand on the structure, electronic structure, and reactivity of the copper(I) nitrite complex: role of the conserved three-histidine ligand environment of the type-2 copper site in copper-containing nitrite reductases.
    Kujime M; Izumi C; Tomura M; Hada M; Fujii H
    J Am Chem Soc; 2008 May; 130(19):6088-98. PubMed ID: 18412340
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Catalysis in a Cage: Condition-Dependent Speciation and Dynamics of Exchanged Cu Cations in SSZ-13 Zeolites.
    Paolucci C; Parekh AA; Khurana I; Di Iorio JR; Li H; Albarracin Caballero JD; Shih AJ; Anggara T; Delgass WN; Miller JT; Ribeiro FH; Gounder R; Schneider WF
    J Am Chem Soc; 2016 May; 138(18):6028-48. PubMed ID: 27070199
    [TBL] [Abstract][Full Text] [Related]  

  • 95. A comparison of copper and acid site zeolites for the production of nitric oxide for biomedical applications.
    Russell SE; González Carballo JM; Orellana-Tavra C; Fairen-Jimenez D; Morris RE
    Dalton Trans; 2017 Mar; 46(12):3915-3920. PubMed ID: 28265629
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Active sites for CO
    Kattel S; Ramírez PJ; Chen JG; Rodriguez JA; Liu P
    Science; 2017 Mar; 355(6331):1296-1299. PubMed ID: 28336665
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Unwanted effects of X-rays in surface grafted copper(ii) organometallics and copper exchanged zeolites, how they manifest, and what can be done about them.
    Newton MA; Knorpp AJ; Meyet J; Stoian D; Nachtegaal M; Clark AH; Safonova OV; Emerich H; van Beek W; Sushkevich VL; van Bokhoven JA
    Phys Chem Chem Phys; 2020 Apr; 22(13):6826-6837. PubMed ID: 32186570
    [TBL] [Abstract][Full Text] [Related]  

  • 98. One-Pot Cu/SAPO-34 for Continuous Methane Selective Oxidation to Methanol.
    Sun L; Wang Y; Gu X; Zhao M; Yuan L
    Molecules; 2024 May; 29(10):. PubMed ID: 38792136
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Theoretical Study of the Oxidation of Methane to Methanol by the [Cu
    Liu YF; Du L
    Inorg Chem; 2018 Mar; 57(6):3261-3271. PubMed ID: 29504752
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Hydrogenation of CO
    Palomino RM; Ramírez PJ; Liu Z; Hamlyn R; Waluyo I; Mahapatra M; Orozco I; Hunt A; Simonovis JP; Senanayake SD; Rodriguez JA
    J Phys Chem B; 2018 Jan; 122(2):794-800. PubMed ID: 28825484
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.