BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 30346159)

  • 1. Cysteine 180 Is a Redox Sensor Modulating the Activity of Human Pyridoxal 5'-Phosphate Histidine Decarboxylase.
    Rossignoli G; Grottesi A; Bisello G; Montioli R; Borri Voltattorni C; Paiardini A; Bertoldi M
    Biochemistry; 2018 Nov; 57(44):6336-6348. PubMed ID: 30346159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human cystathionine beta-synthase is a heme sensor protein. Evidence that the redox sensor is heme and not the vicinal cysteines in the CXXC motif seen in the crystal structure of the truncated enzyme.
    Taoka S; Lepore BW; Kabil O; Ojha S; Ringe D; Banerjee R
    Biochemistry; 2002 Aug; 41(33):10454-61. PubMed ID: 12173932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping of catalytically important residues in the rat L-histidine decarboxylase enzyme using bioinformatic and site-directed mutagenesis approaches.
    Fleming JV; Sánchez-Jiménez F; Moya-García AA; Langlois MR; Wang TC
    Biochem J; 2004 Apr; 379(Pt 2):253-61. PubMed ID: 14961766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Catalytic Mechanism of the Pyridoxal-5'-phosphate-Dependent Enzyme, Histidine Decarboxylase: A Computational Study.
    Fernandes HS; Ramos MJ; Cerqueira NMFSA
    Chemistry; 2017 Jul; 23(38):9162-9173. PubMed ID: 28613002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyridoxal 5'-phosphate dependent histidine decarboxylase: overproduction, purification, biosynthesis of soluble site-directed mutant proteins, and replacement of conserved residues.
    Vaaler GL; Snell EE
    Biochemistry; 1989 Sep; 28(18):7306-13. PubMed ID: 2684275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutation of cysteine 111 in Dopa decarboxylase leads to active site perturbation.
    Dominici P; Moore PS; Castellani S; Bertoldi M; Voltattorni CB
    Protein Sci; 1997 Sep; 6(9):2007-15. PubMed ID: 9300500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homology-based molecular modelling of PLP-dependent histidine decarboxylase from Mmorganella morganii.
    Tahanejad FS; Naderi-Manesh H; Habibinejad B; Mahmoudian M
    Eur J Med Chem; 2000 Jun; 35(6):567-76. PubMed ID: 10906409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of the homodimeric glycine decarboxylase P-protein from Synechocystis sp. PCC 6803 suggests a mechanism for redox regulation.
    Hasse D; Andersson E; Carlsson G; Masloboy A; Hagemann M; Bauwe H; Andersson I
    J Biol Chem; 2013 Dec; 288(49):35333-45. PubMed ID: 24121504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural, redox, and mechanistic parameters for cysteine-sulfenic acid function in catalysis and regulation.
    Claiborne A; Mallett TC; Yeh JI; Luba J; Parsonage D
    Adv Protein Chem; 2001; 58():215-76. PubMed ID: 11665489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox regulation and reaction mechanism of human cystathionine-beta-synthase: a PLP-dependent hemesensor protein.
    Banerjee R; Zou CG
    Arch Biochem Biophys; 2005 Jan; 433(1):144-56. PubMed ID: 15581573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human RNase H1 activity is regulated by a unique redox switch formed between adjacent cysteines.
    Lima WF; Wu H; Nichols JG; Manalili SM; Drader JJ; Hofstadler SA; Crooke ST
    J Biol Chem; 2003 Apr; 278(17):14906-12. PubMed ID: 12473655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyridoxal 5'-phosphate-dependent histidine decarboxylase. Nucleotide sequence of the hdc gene and the corresponding amino acid sequence.
    Vaaler GL; Brasch MA; Snell EE
    J Biol Chem; 1986 Aug; 261(24):11010-4. PubMed ID: 3015950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of the activity of mitochondrial aspartate aminotransferase H352C by the redox state of the engineered interdomain disulfide bond.
    Pan P; Jakob CA; Sandmeier E; Christen P; Gehring H
    J Biol Chem; 1994 Oct; 269(41):25432-6. PubMed ID: 7929241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of Escherichia coli thioredoxin reductase refined at 2 A resolution. Implications for a large conformational change during catalysis.
    Waksman G; Krishna TS; Williams CH; Kuriyan J
    J Mol Biol; 1994 Feb; 236(3):800-16. PubMed ID: 8114095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural study reveals that Ser-354 determines substrate specificity on human histidine decarboxylase.
    Komori H; Nitta Y; Ueno H; Higuchi Y
    J Biol Chem; 2012 Aug; 287(34):29175-83. PubMed ID: 22767596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New Insights Emerging from Recent Investigations on Human Group II Pyridoxal 5'-Phosphate Decarboxylases.
    Paiardini A; Giardina G; Rossignoli G; Voltattorni CB; Bertoldi M
    Curr Med Chem; 2017; 24(3):226-244. PubMed ID: 27881066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic studies on CDP-6-deoxy-delta 3,4-glucoseen reductase: the role of cysteine residues in catalysis as probed by chemical modification and site-directed mutagenesis.
    Ploux O; Lei Y; Vatanen K; Liu HW
    Biochemistry; 1995 Apr; 34(13):4159-68. PubMed ID: 7703227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local changes in the catalytic site of mammalian histidine decarboxylase can affect its global conformation and stability.
    Rodríguez-Caso C; Rodríguez-Agudo D; Moya-García AA; Fajardo I; Medina MA; Subramaniam V; Sánchez-Jiménez F
    Eur J Biochem; 2003 Nov; 270(21):4376-87. PubMed ID: 14622303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel approach to inhibit intracellular vitamin B6-dependent enzymes: proof of principle with human and plasmodium ornithine decarboxylase and human histidine decarboxylase.
    Wu F; Christen P; Gehring H
    FASEB J; 2011 Jul; 25(7):2109-22. PubMed ID: 21454364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Replacement of the catalytic nucleophile cysteine-296 by serine in class II polyhydroxyalkanoate synthase from Pseudomonas aeruginosa-mediated synthesis of a new polyester: identification of catalytic residues.
    Amara AA; Rehm BH
    Biochem J; 2003 Sep; 374(Pt 2):413-21. PubMed ID: 12924980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.