These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 30346212)

  • 1. Neurofunctional correlates of geometry and feature use in a virtual environment.
    Forloines MR; Reid MA; Thompkins AM; Robinson JL; Katz JS
    J Exp Psychol Learn Mem Cogn; 2019 Aug; 45(8):1347-1363. PubMed ID: 30346212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Encoding and retrieval of landmark-related spatial cues during navigation: an fMRI study.
    Wegman J; Tyborowska A; Janzen G
    Hippocampus; 2014 Jul; 24(7):853-68. PubMed ID: 24706395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orientation in Virtual Reality Does Not Fully Measure Up to the Real-World.
    Kimura K; Reichert JF; Olson A; Pouya OR; Wang X; Moussavi Z; Kelly DM
    Sci Rep; 2017 Dec; 7(1):18109. PubMed ID: 29273759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Human Retrosplenial Cortex and Thalamus Code Head Direction in a Global Reference Frame.
    Shine JP; Valdés-Herrera JP; Hegarty M; Wolbers T
    J Neurosci; 2016 Jun; 36(24):6371-81. PubMed ID: 27307227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dynamics of memory consolidation of landmarks.
    van Ekert J; Wegman J; Jansen C; Takashima A; Janzen G
    Hippocampus; 2017 Apr; 27(4):393-404. PubMed ID: 28032685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Navigating toward a novel environment from a route or survey perspective: neural correlates and context-dependent connectivity.
    Boccia M; Guariglia C; Sabatini U; Nemmi F
    Brain Struct Funct; 2016 May; 221(4):2005-21. PubMed ID: 25739692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The functional role of human right hippocampal/parahippocampal theta rhythm in environmental encoding during virtual spatial navigation.
    Pu Y; Cornwell BR; Cheyne D; Johnson BW
    Hum Brain Mapp; 2017 Mar; 38(3):1347-1361. PubMed ID: 27813230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spinning in the scanner: neural correlates of virtual reorientation.
    Sutton JE; Joanisse MF; Newcombe NS
    J Exp Psychol Learn Mem Cogn; 2010 Sep; 36(5):1097-107. PubMed ID: 20804287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hippocampal Volume Reduction in Humans Predicts Impaired Allocentric Spatial Memory in Virtual-Reality Navigation.
    Guderian S; Dzieciol AM; Gadian DG; Jentschke S; Doeller CF; Burgess N; Mishkin M; Vargha-Khadem F
    J Neurosci; 2015 Oct; 35(42):14123-31. PubMed ID: 26490854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patterns of activation and de-activation associated with cue-guided spatial navigation: A whole-brain, voxel-based study.
    Salgado-Pineda P; Landin-Romero R; Pomes A; Spanlang B; Sarró S; Salvador R; Slater M; McKenna PJ; Pomarol-Clotet E
    Neuroscience; 2017 Sep; 358():70-78. PubMed ID: 28663090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The well-worn route revisited: Striatal and hippocampal system contributions to familiar route navigation.
    Buckley M; McGregor A; Ihssen N; Austen J; Thurlbeck S; Smith SP; Heinecke A; Lew AR
    Hippocampus; 2024 Jul; 34(7):310-326. PubMed ID: 38721743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the interaction of navigational systems in a reward-based virtual navigation task.
    Raiesdana S
    J Integr Neurosci; 2018; 17(1):27-42. PubMed ID: 29376881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficacy of navigation may be influenced by retrosplenial cortex-mediated learning of landmark stability.
    Auger SD; Zeidman P; Maguire EA
    Neuropsychologia; 2017 Sep; 104():102-112. PubMed ID: 28802770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Landmark sequencing and route knowledge: an fMRI study.
    Nemmi F; Piras F; Péran P; Incoccia C; Sabatini U; Guariglia C
    Cortex; 2013 Feb; 49(2):507-19. PubMed ID: 22225882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-gamma activity in the human hippocampus and parahippocampus during inter-trial rest periods of a virtual navigation task.
    Pu Y; Cornwell BR; Cheyne D; Johnson BW
    Neuroimage; 2018 Sep; 178():92-103. PubMed ID: 29772381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Which way and how far? Tracking of translation and rotation information for human path integration.
    Chrastil ER; Sherrill KR; Hasselmo ME; Stern CE
    Hum Brain Mapp; 2016 Oct; 37(10):3636-55. PubMed ID: 27238897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impairments in the acquisition, retention and selection of spatial navigation strategies after medial caudate-putamen lesions in rats.
    Whishaw IQ; Mittleman G; Bunch ST; Dunnett SB
    Behav Brain Res; 1987 May; 24(2):125-38. PubMed ID: 3593524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Representation of human spatial navigation responding to input spatial information and output navigational strategies: An ALE meta-analysis.
    Qiu Y; Wu Y; Liu R; Wang J; Huang H; Huang R
    Neurosci Biobehav Rev; 2019 Aug; 103():60-72. PubMed ID: 31201830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Modality-Independent Network Underlies the Retrieval of Large-Scale Spatial Environments in the Human Brain.
    Huffman DJ; Ekstrom AD
    Neuron; 2019 Nov; 104(3):611-622.e7. PubMed ID: 31540825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional correlates of likelihood and prior representations in a virtual distance task.
    Wiener M; Michaelis K; Thompson JC
    Hum Brain Mapp; 2016 Sep; 37(9):3172-87. PubMed ID: 27167875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.