BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 30346293)

  • 1. Adaptive Neural Control of a Kinematically Redundant Exoskeleton Robot Using Brain-Machine Interfaces.
    Li Z; Li J; Zhao S; Yuan Y; Kang Y; Chen CLP
    IEEE Trans Neural Netw Learn Syst; 2019 Dec; 30(12):3558-3571. PubMed ID: 30346293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reference Trajectory Reshaping Optimization and Control of Robotic Exoskeletons for Human-Robot Co-Manipulation.
    Wu X; Li Z; Kan Z; Gao H
    IEEE Trans Cybern; 2020 Aug; 50(8):3740-3751. PubMed ID: 31484148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of Redundant Kinematic Degrees of Freedom in a Closed-Loop Brain-Machine Interface.
    Moorman HG; Gowda S; Carmena JM
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):750-760. PubMed ID: 27455526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Volition-adaptive control for gait training using wearable exoskeleton: preliminary tests with incomplete spinal cord injury individuals.
    Rajasekaran V; López-Larraz E; Trincado-Alonso F; Aranda J; Montesano L; Del-Ama AJ; Pons JL
    J Neuroeng Rehabil; 2018 Jan; 15(1):4. PubMed ID: 29298691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive control of an exoskeleton robot with uncertainties on kinematics and dynamics.
    Brahmi B; Saad M; Ochoa-Luna C; Rahman MH
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1369-1374. PubMed ID: 28814011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinematic Redundancy Analysis during Goal-Directed Motion for Trajectory Planning of an Upper-Limb Exoskeleton Robot.
    Wang C; Peng L; Hou ZG; Li J; Luo L; Chen S; Wang W
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5251-5255. PubMed ID: 31947042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and analysis of a lower limb assistive exoskeleton robot.
    Li X; Wang KY; Yang ZY
    Technol Health Care; 2024; 32(S1):79-93. PubMed ID: 38759039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A brain-controlled lower-limb exoskeleton for human gait training.
    Liu D; Chen W; Pei Z; Wang J
    Rev Sci Instrum; 2017 Oct; 88(10):104302. PubMed ID: 29092520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Learning-Based Hierarchical Control Scheme for an Exoskeleton Robot in Human-Robot Cooperative Manipulation.
    Deng M; Li Z; Kang Y; Chen CLP; Chu X
    IEEE Trans Cybern; 2020 Jan; 50(1):112-125. PubMed ID: 30183653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active Human-Following Control of an Exoskeleton Robot With Body Weight Support.
    Li G; Li Z; Su CY; Xu T
    IEEE Trans Cybern; 2023 Nov; 53(11):7367-7379. PubMed ID: 37030717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements.
    Kawase T; Sakurada T; Koike Y; Kansaku K
    J Neural Eng; 2017 Feb; 14(1):016015. PubMed ID: 28068293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric Cooperation Control of Dual-Arm Exoskeletons Using Human Collaborative Manipulation Models.
    Li Z; Li G; Wu X; Kan Z; Su H; Liu Y
    IEEE Trans Cybern; 2022 Nov; 52(11):12126-12139. PubMed ID: 34637389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of an Ambulatory Exoskeleton with a Brain-Machine Interface for Spinal Cord Injury Gait Rehabilitation.
    López-Larraz E; Trincado-Alonso F; Rajasekaran V; Pérez-Nombela S; Del-Ama AJ; Aranda J; Minguez J; Gil-Agudo A; Montesano L
    Front Neurosci; 2016; 10():359. PubMed ID: 27536214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain-machine interfaces for controlling lower-limb powered robotic systems.
    He Y; Eguren D; Azorín JM; Grossman RG; Luu TP; Contreras-Vidal JL
    J Neural Eng; 2018 Apr; 15(2):021004. PubMed ID: 29345632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human-in-the-Loop Cooperative Control of a Walking Exoskeleton for Following Time-Variable Human Intention.
    Li Z; Zhang T; Huang P; Li G
    IEEE Trans Cybern; 2024 Apr; 54(4):2142-2154. PubMed ID: 36279358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing brain-machine interface (BMI) control of a hand exoskeleton using electrooculography (EOG).
    Witkowski M; Cortese M; Cempini M; Mellinger J; Vitiello N; Soekadar SR
    J Neuroeng Rehabil; 2014 Dec; 11():165. PubMed ID: 25510922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar.
    Luu TP; He Y; Brown S; Nakagame S; Contreras-Vidal JL
    J Neural Eng; 2016 Jun; 13(3):036006. PubMed ID: 27064824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Bayesian Shared Control Approach for Wheelchair Robot With Brain Machine Interface.
    Deng X; Yu ZL; Lin C; Gu Z; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):328-338. PubMed ID: 31825869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An exoskeleton controlled by an epidural wireless brain-machine interface in a tetraplegic patient: a proof-of-concept demonstration.
    Benabid AL; Costecalde T; Eliseyev A; Charvet G; Verney A; Karakas S; Foerster M; Lambert A; Morinière B; Abroug N; Schaeffer MC; Moly A; Sauter-Starace F; Ratel D; Moro C; Torres-Martinez N; Langar L; Oddoux M; Polosan M; Pezzani S; Auboiroux V; Aksenova T; Mestais C; Chabardes S
    Lancet Neurol; 2019 Dec; 18(12):1112-1122. PubMed ID: 31587955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.