BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 30346380)

  • 1. Use of Hematopoietic Stem Cell Transplantation to Assess the Origin of Myelodysplastic Syndrome.
    Chung YJ; Khawaja G; Wolcott KM; Aplan PD
    J Vis Exp; 2018 Oct; (140):. PubMed ID: 30346380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transplantation of a myelodysplastic syndrome by a long-term repopulating hematopoietic cell.
    Chung YJ; Choi CW; Slape C; Fry T; Aplan PD
    Proc Natl Acad Sci U S A; 2008 Sep; 105(37):14088-93. PubMed ID: 18768819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting of the bone marrow microenvironment improves outcome in a murine model of myelodysplastic syndrome.
    Balderman SR; Li AJ; Hoffman CM; Frisch BJ; Goodman AN; LaMere MW; Georger MA; Evans AG; Liesveld JL; Becker MW; Calvi LM
    Blood; 2016 Feb; 127(5):616-25. PubMed ID: 26637787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Depletion of cytotoxic T-cells does not protect NUP98-HOXD13 mice from myelodysplastic syndrome but reveals a modest tumor immunosurveillance effect.
    Gough SM; Chung YJ; Aplan PD
    PLoS One; 2012; 7(5):e36876. PubMed ID: 22606303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NUP98-HOX translocations lead to myelodysplastic syndrome in mice and men.
    Slape C; Lin YW; Hartung H; Zhang Z; Wolff L; Aplan PD
    J Natl Cancer Inst Monogr; 2008; (39):64-8. PubMed ID: 18648006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myeloablative hematopoietic stem cell transplantation improves survival but is not curative in a pre-clinical model of myelodysplastic syndrome.
    Chung YJ; Fry TJ; Aplan PD
    PLoS One; 2017; 12(9):e0185219. PubMed ID: 28953912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss of p53 accelerates the complications of myelodysplastic syndrome in a NUP98-HOXD13-driven mouse model.
    Xu H; Menendez S; Schlegelberger B; Bae N; Aplan PD; Göhring G; Deblasio TR; Nimer SD
    Blood; 2012 Oct; 120(15):3089-97. PubMed ID: 22927245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NUP98-HOXD13 transgenic mice develop a highly penetrant, severe myelodysplastic syndrome that progresses to acute leukemia.
    Lin YW; Slape C; Zhang Z; Aplan PD
    Blood; 2005 Jul; 106(1):287-95. PubMed ID: 15755899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PUMA promotes apoptosis of hematopoietic progenitors driving leukemic progression in a mouse model of myelodysplasia.
    Guirguis AA; Slape CI; Failla LM; Saw J; Tremblay CS; Powell DR; Rossello F; Wei A; Strasser A; Curtis DJ
    Cell Death Differ; 2016 Jun; 23(6):1049-59. PubMed ID: 26742432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative stress leads to increased mutation frequency in a murine model of myelodysplastic syndrome.
    Chung YJ; Robert C; Gough SM; Rassool FV; Aplan PD
    Leuk Res; 2014 Jan; 38(1):95-102. PubMed ID: 23958061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Progressive genomic instability in the Nup98-HoxD13 model of MDS correlates with loss of the PIG-A gene product.
    Byrne M; Bennett RL; Cheng X; May WS
    Neoplasia; 2014 Aug; 16(8):627-33. PubMed ID: 25220590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SETD2 deficiency accelerates MDS-associated leukemogenesis via S100a9 in NHD13 mice and predicts poor prognosis in MDS.
    Chen BY; Song J; Hu CL; Chen SB; Zhang Q; Xu CH; Wu JC; Hou D; Sun M; Zhang YL; Liu N; Yu PC; Liu P; Zong LJ; Zhang JY; Dai RF; Lan F; Huang QH; Zhang SJ; Nimer SD; Chen Z; Chen SJ; Sun XJ; Wang L
    Blood; 2020 Jun; 135(25):2271-2285. PubMed ID: 32202636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inappropriate Notch activity and limited mesenchymal stem cell plasticity in the bone marrow of patients with myelodysplastic syndromes.
    Varga G; Kiss J; Várkonyi J; Vas V; Farkas P; Pálóczi K; Uher F
    Pathol Oncol Res; 2007; 13(4):311-9. PubMed ID: 18158566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New Insights into the Pathogenesis of MDS and the rational therapeutic opportunities.
    Abou Zahr A; Bernabe Ramirez C; Wozney J; Prebet T; Zeidan AM
    Expert Rev Hematol; 2016; 9(4):377-88. PubMed ID: 26734762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physician Education: Myelodysplastic Syndrome.
    Yoshida Y
    Oncologist; 1996; 1(4):284-287. PubMed ID: 10388004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Refractory anemia and the myelodysplastic syndromes.
    Lawrence LW
    Clin Lab Sci; 2004; 17(3):178-86. PubMed ID: 15314893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Current Management and New Developments in the Treatment of Myelodysplastic Syndrome.
    Arslan S; Khaled S; Nakamura R
    Cancer Treat Res; 2021; 181():115-132. PubMed ID: 34626358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Donor cell leukemia/myelodysplastic syndrome after allogeneic stem cell transplantation: a rare phenomenon with more challenges for hematologists.
    Zhang S; Li L; Cao W; Li Y; Jiang Z; Yu J; Wan D
    Hematology; 2021 Dec; 26(1):648-651. PubMed ID: 34474660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA-hypomethylating agents as epigenetic therapy before and after allogeneic hematopoietic stem cell transplantation in myelodysplastic syndromes and juvenile myelomonocytic leukemia.
    Flotho C; Sommer S; Lübbert M
    Semin Cancer Biol; 2018 Aug; 51():68-79. PubMed ID: 29129488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Study of Human Leukocyte Antigen Mismatched Cellular Therapy (Stem Cell Microtransplantation) in High-Risk Myelodysplastic Syndrome or Transformed Acute Myelogenous Leukemia.
    Hu KX; Sun QY; Guo M; Qiao JX; Yu CL; Qiao JH; Dong Z; Sun WJ; Zuo HL; Huang YJ; Cai B; Ai HS
    Stem Cells Transl Med; 2016 Apr; 5(4):524-9. PubMed ID: 26838271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.