BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 30346394)

  • 1. Controllable Nucleation of Cavitation from Plasmonic Gold Nanoparticles for Enhancing High Intensity Focused Ultrasound Applications.
    McLaughlan JR
    J Vis Exp; 2018 Oct; (140):. PubMed ID: 30346394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gold nanoparticle nucleated cavitation for enhanced high intensity focused ultrasound therapy.
    McLaughlan JR; Cowell DMJ; Freear S
    Phys Med Biol; 2017 Dec; 63(1):015004. PubMed ID: 29098986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of acoustic cavitation in the delivery and monitoring of cancer treatment by high-intensity focused ultrasound (HIFU).
    Coussios CC; Farny CH; Haar GT; Roy RA
    Int J Hyperthermia; 2007 Mar; 23(2):105-20. PubMed ID: 17578336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoparticle-Mediated Acoustic Cavitation Enables High Intensity Focused Ultrasound Ablation Without Tissue Heating.
    Yildirim A; Shi D; Roy S; Blum NT; Chattaraj R; Cha JN; Goodwin AP
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):36786-36795. PubMed ID: 30339360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated ultrasound and magnetic resonance imaging for simultaneous temperature and cavitation monitoring during focused ultrasound therapies.
    Arvanitis CD; McDannold N
    Med Phys; 2013 Nov; 40(11):112901. PubMed ID: 24320468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of sonoluminescence signals in a gel phantom in the presence of Protoporphyrin IX conjugated to gold nanoparticles.
    Sazgarnia A; Shanei A; Eshghi H; Hassanzadeh-Khayyat M; Esmaily H; Shanei MM
    Ultrasonics; 2013 Jan; 53(1):29-35. PubMed ID: 22560541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring of transient cavitation induced by ultrasound and intense pulsed light in presence of gold nanoparticles.
    Sazgarnia A; Shanei A; Shanei MM
    Ultrason Sonochem; 2014 Jan; 21(1):268-74. PubMed ID: 23938062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyperecho in ultrasound images of HIFU therapy: involvement of cavitation.
    Rabkin BA; Zderic V; Vaezy S
    Ultrasound Med Biol; 2005 Jul; 31(7):947-56. PubMed ID: 15972200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of gold nanoparticle size on acoustic cavitation using chemical dosimetry method.
    Shanei A; Shanei MM
    Ultrason Sonochem; 2017 Jan; 34():45-50. PubMed ID: 27773268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Passive spatial mapping of inertial cavitation during HIFU exposure.
    Gyöngy M; Coussios CC
    IEEE Trans Biomed Eng; 2010 Jan; 57(1):48-56. PubMed ID: 19628450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A real-time controller for sustaining thermally relevant acoustic cavitation during ultrasound therapy.
    Hockham N; Coussios CC; Arora M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Dec; 57(12):2685-94. PubMed ID: 21156364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient and controllable thermal ablation induced by short-pulsed HIFU sequence assisted with perfluorohexane nanodroplets.
    Chang N; Lu S; Qin D; Xu T; Han M; Wang S; Wan M
    Ultrason Sonochem; 2018 Jul; 45():57-64. PubMed ID: 29705325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal and spatial detection of HIFU-induced inertial and hot-vapor cavitation with a diagnostic ultrasound system.
    Farny CH; Holt RG; Roy RA
    Ultrasound Med Biol; 2009 Apr; 35(4):603-15. PubMed ID: 19110368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Therapeutic effects of acoustic cavitation in the presence of gold nanoparticles on a colon tumor model.
    Sazgarnia A; Shanei A; Taheri AR; Meibodi NT; Eshghi H; Attaran N; Shanei MM
    J Ultrasound Med; 2013 Mar; 32(3):475-83. PubMed ID: 23443188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling cavitation nucleation from laser-illuminated nanoparticles subjected to acoustic stress.
    Wu T; Farny CH; Roy RA; Holt RG
    J Acoust Soc Am; 2011 Nov; 130(5):3252-63. PubMed ID: 22087997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Minimizing the thermal losses from perfusion during focused ultrasound exposures with flowing microbubbles.
    Zhang S; Ding T; Wan M; Jiang H; Yang X; Zhong H; Wang S
    J Acoust Soc Am; 2011 Apr; 129(4):2336-44. PubMed ID: 21476689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing Thermal Effect of Focused Ultrasound Therapy Using Gold Nanoparticles.
    Sadeghi-Goughari M; Jeon S; Kwon HJ
    IEEE Trans Nanobioscience; 2019 Oct; 18(4):661-668. PubMed ID: 31449028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of Gold Nanoparticle-Mediated-Enhanced Hyperthermia Using MR-Guided High-Intensity Focused Ultrasound Ablation Procedure.
    Devarakonda SB; Myers MR; Lanier M; Dumoulin C; Banerjee RK
    Nano Lett; 2017 Apr; 17(4):2532-2538. PubMed ID: 28287747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasonic enhancement of photoacoustic emissions by nanoparticle-targeted cavitation.
    McLaughlan JR; Roy RA; Ju H; Murray TW
    Opt Lett; 2010 Jul; 35(13):2127-9. PubMed ID: 20596168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-intensity focused ultrasound (HIFU) ablation by the frequency chirps: Enhanced thermal field and cavitation at the focus.
    Wang M; Lei Y; Zhou Y
    Ultrasonics; 2019 Jan; 91():134-149. PubMed ID: 30146323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.