BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 30346493)

  • 1. SENSE: Siamese neural network for sequence embedding and alignment-free comparison.
    Zheng W; Yang L; Genco RJ; Wactawski-Wende J; Buck M; Sun Y
    Bioinformatics; 2019 Jun; 35(11):1820-1828. PubMed ID: 30346493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alignment-free comparison of metagenomics sequences via approximate string matching.
    Chen J; Yang L; Li L; Goodison S; Sun Y
    Bioinform Adv; 2022; 2(1):vbac077. PubMed ID: 36388153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A parallel computational framework for ultra-large-scale sequence clustering analysis.
    Zheng W; Mao Q; Genco RJ; Wactawski-Wende J; Buck M; Cai Y; Sun Y
    Bioinformatics; 2019 Feb; 35(3):380-388. PubMed ID: 30010718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. K2 and K2*: efficient alignment-free sequence similarity measurement based on Kendall statistics.
    Lin J; Adjeroh DA; Jiang BH; Jiang Y
    Bioinformatics; 2018 May; 34(10):1682-1689. PubMed ID: 29253072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep-learning approach to identifying cancer subtypes using high-dimensional genomic data.
    Chen R; Yang L; Goodison S; Sun Y
    Bioinformatics; 2020 Mar; 36(5):1476-1483. PubMed ID: 31603461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ESPRIT-Forest: Parallel clustering of massive amplicon sequence data in subquadratic time.
    Cai Y; Zheng W; Yao J; Yang Y; Mai V; Mao Q; Sun Y
    PLoS Comput Biol; 2017 Apr; 13(4):e1005518. PubMed ID: 28437450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fuse: multiple network alignment via data fusion.
    Gligorijević V; Malod-Dognin N; Pržulj N
    Bioinformatics; 2016 Apr; 32(8):1195-203. PubMed ID: 26668003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CMsearch: simultaneous exploration of protein sequence space and structure space improves not only protein homology detection but also protein structure prediction.
    Cui X; Lu Z; Wang S; Jing-Yan Wang J; Gao X
    Bioinformatics; 2016 Jun; 32(12):i332-i340. PubMed ID: 27307635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ResPRE: high-accuracy protein contact prediction by coupling precision matrix with deep residual neural networks.
    Li Y; Hu J; Zhang C; Yu DJ; Zhang Y
    Bioinformatics; 2019 Nov; 35(22):4647-4655. PubMed ID: 31070716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DeepSF: deep convolutional neural network for mapping protein sequences to folds.
    Hou J; Adhikari B; Cheng J
    Bioinformatics; 2018 Apr; 34(8):1295-1303. PubMed ID: 29228193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PASTASpark: multiple sequence alignment meets Big Data.
    Abuín JM; Pena TF; Pichel JC
    Bioinformatics; 2017 Sep; 33(18):2948-2950. PubMed ID: 28582480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromatin accessibility prediction via convolutional long short-term memory networks with k-mer embedding.
    Min X; Zeng W; Chen N; Chen T; Jiang R
    Bioinformatics; 2017 Jul; 33(14):i92-i101. PubMed ID: 28881969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DeepMSA: constructing deep multiple sequence alignment to improve contact prediction and fold-recognition for distant-homology proteins.
    Zhang C; Zheng W; Mortuza SM; Li Y; Zhang Y
    Bioinformatics; 2020 Apr; 36(7):2105-2112. PubMed ID: 31738385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying antimicrobial peptides using word embedding with deep recurrent neural networks.
    Hamid MN; Friedberg I
    Bioinformatics; 2019 Jun; 35(12):2009-2016. PubMed ID: 30418485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MONACO: accurate biological network alignment through optimal neighborhood matching between focal nodes.
    Woo HM; Yoon BJ
    Bioinformatics; 2021 Jun; 37(10):1401-1410. PubMed ID: 33165517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRAFT: Compact genome Representation toward large-scale Alignment-Free daTabase.
    Lu YY; Bai J; Wang Y; Wang Y; Sun F
    Bioinformatics; 2021 Apr; 37(2):155-161. PubMed ID: 32766810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shouji: a fast and efficient pre-alignment filter for sequence alignment.
    Alser M; Hassan H; Kumar A; Mutlu O; Alkan C
    Bioinformatics; 2019 Nov; 35(21):4255-4263. PubMed ID: 30923804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel sequence alignment algorithm based on deep learning of the protein folding code.
    Gao M; Skolnick J
    Bioinformatics; 2021 May; 37(4):490-496. PubMed ID: 32960943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling positional effects of regulatory sequences with spline transformations increases prediction accuracy of deep neural networks.
    Avsec Ž; Barekatain M; Cheng J; Gagneur J
    Bioinformatics; 2018 Apr; 34(8):1261-1269. PubMed ID: 29155928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multifaceted protein-protein interaction prediction based on Siamese residual RCNN.
    Chen M; Ju CJ; Zhou G; Chen X; Zhang T; Chang KW; Zaniolo C; Wang W
    Bioinformatics; 2019 Jul; 35(14):i305-i314. PubMed ID: 31510705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.