BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 30346590)

  • 1. Sustained vigilance is negatively affected by mild and acute sleep loss reflected by reduced capacity for decision making, motor preparation, and execution.
    Stojanoski B; Benoit A; Van Den Berg N; Ray LB; Owen AM; Shahidi Zandi A; Quddus A; Comeau FJE; Fogel SM
    Sleep; 2019 Jan; 42(1):. PubMed ID: 30346590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ability to self-monitor cognitive performance during 60 h total sleep deprivation and following 2 nights recovery sleep.
    Boardman JM; Bei B; Mellor A; Anderson C; Sletten TL; Drummond SPA
    J Sleep Res; 2018 Aug; 27(4):e12633. PubMed ID: 29159907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sleep deprivation differentially affects subcomponents of cognitive control.
    Kusztor A; Raud L; Juel BE; Nilsen AS; Storm JF; Huster RJ
    Sleep; 2019 Apr; 42(4):. PubMed ID: 30649563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EEG and behavioural correlates of mild sleep deprivation and vigilance.
    Gibbings A; Ray LB; Berberian N; Nguyen T; Shahidi Zandi A; Owen AM; Comeau FJE; Fogel SM
    Clin Neurophysiol; 2021 Jan; 132(1):45-55. PubMed ID: 33248433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repeated Administration Effects on Psychomotor Vigilance Test Performance.
    Basner M; Hermosillo E; Nasrini J; McGuire S; Saxena S; Moore TM; Gur RC; Dinges DF
    Sleep; 2018 Jan; 41(1):. PubMed ID: 29126328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human fronto-parietal response scattering subserves vigilance at night.
    Gaggioni G; Ly JQM; Chellappa SL; Coppieters 't Wallant D; Rosanova M; Sarasso S; Luxen A; Salmon E; Middleton B; Massimini M; Schmidt C; Casali A; Phillips C; Vandewalle G
    Neuroimage; 2018 Jul; 175():354-364. PubMed ID: 29604455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The EEG correlates and dangerous behavioral consequences of drowsy driving after a single night of mild sleep deprivation.
    Gibbings A; Ray LB; Gagnon S; Collin CA; Robillard R; Fogel SM
    Physiol Behav; 2022 Aug; 252():113822. PubMed ID: 35469778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acute versus chronic partial sleep deprivation in middle-aged people: differential effect on performance and sleepiness.
    Philip P; Sagaspe P; Prague M; Tassi P; Capelli A; Bioulac B; Commenges D; Taillard J
    Sleep; 2012 Jul; 35(7):997-1002. PubMed ID: 22754046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An examination of the association between chronic sleep restriction and electrocortical arousal in college students.
    Witkowski S; Trujillo LT; Sherman SM; Carter P; Matthews MD; Schnyer DM
    Clin Neurophysiol; 2015 Mar; 126(3):549-57. PubMed ID: 25043966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alcohol and sleep restriction combined reduces vigilant attention, whereas sleep restriction alone enhances distractibility.
    Lee J; Manousakis J; Fielding J; Anderson C
    Sleep; 2015 May; 38(5):765-75. PubMed ID: 25515101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mismatch between subjective alertness and objective performance under sleep restriction is greatest during the biological night.
    Zhou X; Ferguson SA; Matthews RW; Sargent C; Darwent D; Kennaway DJ; Roach GD
    J Sleep Res; 2012 Feb; 21(1):40-9. PubMed ID: 21564364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cumulative mild partial sleep deprivation negatively impacts working memory capacity but not sustained attention, response inhibition, or decision making: a randomized controlled trial.
    Santisteban JA; Brown TG; Ouimet MC; Gruber R
    Sleep Health; 2019 Feb; 5(1):101-108. PubMed ID: 30670158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CNS arousal and neurobehavioral performance in a short-term sleep restriction paradigm.
    Cote KA; Milner CE; Smith BA; Aubin AJ; Greason TA; Cuthbert BP; Wiebe S; Duffus SE
    J Sleep Res; 2009 Sep; 18(3):291-303. PubMed ID: 19552702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Psychomotor vigilance task performance during and following chronic sleep restriction in rats.
    Deurveilher S; Bush JE; Rusak B; Eskes GA; Semba K
    Sleep; 2015 Apr; 38(4):515-28. PubMed ID: 25515100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective neuronal lapses precede human cognitive lapses following sleep deprivation.
    Nir Y; Andrillon T; Marmelshtein A; Suthana N; Cirelli C; Tononi G; Fried I
    Nat Med; 2017 Dec; 23(12):1474-1480. PubMed ID: 29106402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-awakening improves alertness in the morning and during the day after partial sleep deprivation.
    Ikeda H; Kubo T; Kuriyama K; Takahashi M
    J Sleep Res; 2014 Dec; 23(6):673-680. PubMed ID: 25130898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limited Efficacy of Caffeine and Recovery Costs During and Following 5 Days of Chronic Sleep Restriction.
    Doty TJ; So CJ; Bergman EM; Trach SK; Ratcliffe RH; Yarnell AM; Capaldi VF; Moon JE; Balkin TJ; Quartana PJ
    Sleep; 2017 Dec; 40(12):. PubMed ID: 29029309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feedback Blunting: Total Sleep Deprivation Impairs Decision Making that Requires Updating Based on Feedback.
    Whitney P; Hinson JM; Jackson ML; Van Dongen HP
    Sleep; 2015 May; 38(5):745-54. PubMed ID: 25515105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation.
    Van Dongen HP; Maislin G; Mullington JM; Dinges DF
    Sleep; 2003 Mar; 26(2):117-26. PubMed ID: 12683469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of sleep deprivation on cognition.
    Killgore WD
    Prog Brain Res; 2010; 185():105-29. PubMed ID: 21075236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.